[发明专利]一种视觉目标跟踪方法及装置有效
申请号: | 201611151489.8 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106650805B | 公开(公告)日: | 2019-07-30 |
发明(设计)人: | 尹英杰;王欣刚;徐德 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 钟文芳 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 视觉 目标 跟踪 方法 装置 | ||
本发明提供了一种目标跟踪方法及装置。所述方法包括:离线训练特定目标的检测器;采用检测器检测图像中的目标;在线学习跟踪器判别模型;采用跟踪器跟踪下一帧图像中的目标;通过检测器判断跟踪器是否跟踪失败;若跟踪失败则重新检测图像中的目标,若跟踪成功则累积目标的特征向量及对应的子图像,并在线学习跟踪器判别模型;通过基于密度峰值的方法在线挖掘正支持向量,对跟踪器进行在线修正,然后采用跟踪器跟踪下一帧图像中的目标。
技术领域
本发明属于计算机图像技术领域,具体地涉及一种融合检测器的鲁棒视觉目标跟踪的方法及装置。
背景技术
常见的视觉目标的跟踪方法是通过人工选取第一帧图像中的目标,然后通过在线学习目标的生成模型或在线学习判别目标和背景的判别模型来实现对目标的跟踪,在一些复杂条件下(如环境光线变化、目标被遮挡及目标不在摄像机视野内等),会导致跟踪漂移问题,进而使得跟踪失败,由于缺乏检测器的有效辅助,跟踪器丢失目标之后很难重新跟踪到目标。
发明内容
为了解决现有技术中在复杂条件下,跟踪器会产生漂移问题使得跟踪失败以及跟踪器丢失目标之后很难重新跟踪到目标等问题,本发明目的在于提供一种融合检测器的鲁棒的视觉目标跟踪方法及装置。
根据本发明的一个方面,提供了一种视觉目标跟踪方法,该方法包括步骤如下:
步骤S1:离线训练预定目标的检测器
步骤S2:采用所述检测器检测第i-1帧图像中的所述预定目标,其中i为大于等于1的正整数;
步骤S3:在线学习跟踪器判别模型;
步骤S4:采用所述跟踪器判别模型跟踪第i帧图像中的所述预定目标;
步骤S5:通过所述检测器判断所述跟踪器判别模型跟踪所述预定目标是否成功;
步骤S6:若所述跟踪器判别模型跟踪所述预定目标成功,则存储所述跟踪器判别模型跟踪得到的所述预定目标的特征向量及跟踪得到的目标图像,并在线学习跟踪器判别模型,转步骤S7;否则,i=i+1,转步骤S2重新检测所述预定目标并重新在线学习所述跟踪器判别模型;
步骤S7:通过基于密度峰值的方法在线挖掘正支持向量,并对跟踪器进行在线修正,i=i+1,然后跳转到步骤S4。
其中,步骤S1包括以下步骤:
步骤S11:计算正负样本图像的梯度方向直方图特征,生成正样本图像和负样本图像的特征向量;包括:
步骤S11A:将正样本图像通过双线性差值方法归一化为固定大小ws×hs,其中ws为归一化正样本图像的宽,hs为归一化正样本图像的高;
步骤S11B:将归一化的正样本图像划分为Nc1×Nc2个细胞单元Cij,1<i<Nc1,1<j<Nc2;每个细胞单元大小为k×k,其中k=ws/Nc1=hs/Nc2;
步骤S11C:在每个细胞单元Cij中对梯度方向进行独立统计,以梯度方向为横轴的直方图,然后将这个梯度分布平均分成多个无符号方向角度,每个方向角度范围对应方向角度范围的梯度幅值累积值,将多个梯度幅值累积值组成多个维特征向量Vij,然后通过4个归一化系数对Vii进行归一化,进而得到细胞单元Cij对应的特征向量Fij;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611151489.8/2.html,转载请声明来源钻瓜专利网。