[发明专利]一种基于多级筛选卷积神经网络的微血管瘤图像识别方法有效
申请号: | 201611145150.7 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106803247B | 公开(公告)日: | 2021-01-22 |
发明(设计)人: | 盛斌;戴领;倪纯;瞿蒙;郑凌寒;陈慕凡 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/10;G06N3/04 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 叶敏华 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于多级筛选卷积神经网络的微血管瘤自动检测方法,包括:将待检测图像进行随机蕨分割,根据分割结果得到待检测图像的辅助通道图像;将辅助通道图像与待检测图像作为输入,进入多级筛选卷积神经网络训练模型进行检测,得到待检测图像的微血管瘤检测结果;训练模型的建立过程具体为:将现有的微血管瘤诊断报告作为样本,对微血管瘤诊断报告中的病变图像进行随机蕨分割,根据分割结果建立辅助通道图像;将得到的辅助通道图像与医生对像素的病变标记图像进行比对,根据比对结果将样本分类并进行多级筛选卷积神经网络训练,得到多级筛选卷积神经网络训练模型。与现有技术相比,本发明具有检测精度高、计算量小以及普适性高等优点。 | ||
搜索关键词: | 一种 基于 多级 筛选 卷积 神经网络 微血管 图像 识别 方法 | ||
【主权项】:
一种基于多级筛选卷积神经网络的微血管瘤自动检测方法,其特征在于,所述方法包括下列步骤:A1)将待检测图像进行随机蕨分割,根据分割结果得到待检测图像的辅助通道图像;A2)将步骤A1)得到的待检测图像的辅助通道图像与待检测图像作为输入,进入多级筛选卷积神经网络训练模型进行检测,得到待检测图像的微血管瘤检测结果;所述步骤A2)中的多级筛选卷积神经网络训练模型的建立过程具体为:B1)将现有的微血管瘤诊断报告作为样本,对微血管瘤诊断报告中的病变图像进行随机蕨分割,根据分割结果建立辅助通道图像;B2)将得到的辅助通道图像与医生对像素的病变标记图像进行比对,根据比对结果将样本分类并进行多级筛选卷积神经网络训练,得到多级筛选卷积神经网络训练模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611145150.7/,转载请声明来源钻瓜专利网。
- 上一篇:图像质量评价方法、装置及设备
- 下一篇:模糊车牌图像模糊度评价方法