[发明专利]一种基于多级筛选卷积神经网络的微血管瘤图像识别方法有效
申请号: | 201611145150.7 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106803247B | 公开(公告)日: | 2021-01-22 |
发明(设计)人: | 盛斌;戴领;倪纯;瞿蒙;郑凌寒;陈慕凡 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/10;G06N3/04 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 叶敏华 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 多级 筛选 卷积 神经网络 微血管 图像 识别 方法 | ||
本发明涉及一种基于多级筛选卷积神经网络的微血管瘤自动检测方法,包括:将待检测图像进行随机蕨分割,根据分割结果得到待检测图像的辅助通道图像;将辅助通道图像与待检测图像作为输入,进入多级筛选卷积神经网络训练模型进行检测,得到待检测图像的微血管瘤检测结果;训练模型的建立过程具体为:将现有的微血管瘤诊断报告作为样本,对微血管瘤诊断报告中的病变图像进行随机蕨分割,根据分割结果建立辅助通道图像;将得到的辅助通道图像与医生对像素的病变标记图像进行比对,根据比对结果将样本分类并进行多级筛选卷积神经网络训练,得到多级筛选卷积神经网络训练模型。与现有技术相比,本发明具有检测精度高、计算量小以及普适性高等优点。
技术领域
本发明涉及图像处理技术领域,尤其是涉及一种基于多级筛选卷积神经网络的微血管瘤图像识别方法。
背景技术
微血管瘤作为视网膜病变最早期的症状之一,其自动检测是糖尿病早期眼底病变检测中最关键的一步,对防止眼底病变继续发展从而影响视力甚至致盲有重大意义。在实际检测过程中,一方面微血管瘤病变面积小,很容易与小的血管交叉点,出血点相混,难以辨别;另一方面,由于眼底图像拍摄条件恶劣,往往存在光照不均,噪声严重等问题,很容易受晶状体浑浊等其他疾病的影响,微血管瘤的精确检测十分困难。针对微血管瘤检测,现有方法大致可以分为以下三类:基于形态学方法,基于小波变换等数学变换的方法,基于机器学习的方法,其中基于机器学习的方法多采用浅层神经网络,支持向量机等分类器。无论是非机器学习的方法还是基于机器学习的方法都建立在研究者的先验知识之上,且都基于很强的未经验证的假设,而这些假设通常只在部分情况下成立。此外,上述方法都需要反复考虑如何将病变形状信息合并在分割方法中。由于微血管瘤在眼底图像中辨识度很低,因此其检测需要非常敏感的分类器,且能够在图像噪声干扰和其他病变干扰的情况下具有稳定性,而浅层神经网络、支持向量机等分类器不足以满足其敏感性与稳定性的要求。
经过对现有技术的文献索引发现,A.Mizutani等人在2009年“SPIE medicalimaging”第72601N页上发表的“Automated microaneurysm detection method based ondouble ring filter in retinal fundus images”文章中提出了Double-Ring-Filter的图形滤波器,该滤波器计算一大一小两个同心圆环的平均像素灰度值,较小的圆环由于覆盖了大部分的微血管瘤区域,将具有较小的平均灰度值,而较大的圆环将没有或者仅覆盖较少的微血管瘤病变区域,因此将具有较大的平均灰度值,在大小圆环像素平均灰度较大的部分将被视为微血管瘤的候选区域。然而该方法同样无法避免将噪声、直径与微血管瘤相似的小型血管错误分类为微血管瘤,仍然需要对候选点进行进一步处理。Quellec等人在2008年“IEEE Transactions on Medical Imaging”第1230至第1241页上发表的“Optimalwavelet transform for the detection of microaneurysms in retina photographs”文章中提出了基于小波变换的微血管瘤自动检测方法。其算法主要使用了一个在小波变换之后的局部模板匹配器,并在图像小波变换之后的与模板最为匹配的区域通过方向下降法(direction decent)找到微血管瘤病变位置。该方法使用了一个2-D对称的高斯方程对微血管瘤的灰度图形进行建模,生成了微血管瘤的模板。然而此方法中微血管瘤的灰度分布仅仅是通过大量实例中观察到的结果,随着拍摄技术的发展,实际分布可能与假设不符。S.Angadi等人在2015年“Proceedings of the 3rd International Conference onFrontiers of Intelligent Computing:Theory and Applications(FICTA)”第589至596页上发表的“Detection and Classification of Microaneurysms Using DTCWT and LogGabor Features in Retinal Images”文章中提出了基于SVM的同时使用二叉树复式小波变换与伽柏特征作为图像特征,他们从图像中提取纹理特征,然后使用支持向量机作为分类器对图像进行分类。SVM是一种对参数比较敏感的分类器,为了达到较好的效果,需要手动调节参数或者在一个高维空间中搜索最佳参数。这给SVM的使用带来了困难,也给方法本身造成了一些限制。且由于SVM本身只能分割线性可分的问题,如果希望对该算法进行任何拓展或者加入新的特征,将导致重新调节参数甚至重新设计核方程。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611145150.7/2.html,转载请声明来源钻瓜专利网。
- 上一篇:图像质量评价方法、装置及设备
- 下一篇:模糊车牌图像模糊度评价方法