[发明专利]一种信号识别分类方法有效
申请号: | 201010148975.0 | 申请日: | 2010-04-19 |
公开(公告)号: | CN101832471A | 公开(公告)日: | 2010-09-15 |
发明(设计)人: | 傅荟璇;于占东;李冰;王宇超;杜春洋 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | F17D5/06 | 分类号: | F17D5/06;G06N99/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供的是一种信号识别分类方法。首先利用小波变换的方法对含有较高噪声的原始数据进行降噪,在数据分析中将信号分解为高频和低频信息,采用软阈值法对信号进行消噪,然后进行信号重构;在继承小波变换所具有的良好时频局部化优点的同时,对多尺度分析没有细分的高频部分进行进一步的分解;利用小波包变换在多层分解后的不同频带内分析信号,提取出反映系统状态的特征信息;通过非线性变换将输入信号特征向量变换到高维特征空间,然后在这个高维特征空间求取最优线性分类面。本发明克服了神经网络学习中网络结构难以确定、收敛速度慢以及训练时需要大量数据样本等不足,使其具有面向工程实际应用精度高、实时强的特点。 | ||
搜索关键词: | 一种 信号 识别 分类 方法 | ||
【主权项】:
一种信号识别分类方法,其特征是:步骤一小波变换降噪,首先利用小波变换的方法对含有较高噪声的原始数据进行降噪,在数据分析中将信号分解为高频和低频信息,采用软阈值法对信号进行消噪,然后进行信号重构;步骤二小波包分解,在继承小波变换所具有的良好时频局部化优点的同时,对多尺度分析没有细分的高频部分进行进一步的分解;步骤三信号特征提取,在小波包分解基础上,利用小波包变换在多层分解后的不同频带内分析信号,提取出反映系统状态的特征信息。步骤四最小二乘支持向量机识别,通过非线性变换将输入信号特征向量变换到高维特征空间,利用结构风险最小原则,在这个高维特征空间求取最优线性分类面,这种非线性变换通过定义内积函数来实现。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201010148975.0/,转载请声明来源钻瓜专利网。
- 上一篇:油田专用湿蒸汽发生器在线清灰装置
- 下一篇:限压截止阀