[发明专利]一种基于改进多基分类器集成的自动心律失常分析方法有效
申请号: | 202110343071.1 | 申请日: | 2021-03-30 |
公开(公告)号: | CN113080993B | 公开(公告)日: | 2023-02-03 |
发明(设计)人: | 张蓝天;吴松 | 申请(专利权)人: | 北京芯动卫士科技有限公司 |
主分类号: | A61B5/349 | 分类号: | A61B5/349;A61B5/35;A61B5/352 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100000 北京市海淀区*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进 分类 集成 自动 心律失常 分析 方法 | ||
本发明公开了一种基于改进多基分类器集成的自动心律失常分析方法,包括以下步骤:预处理模块,包括心电信号降噪、心拍识别及截取;分类模块,包括用以对心电图数据进行心律失常自动分类的XGBoost分类模块、GBDT分类模块、BiGRU分类模块;融合模块,用以依据模型集成规则—Stacking,将分类模块产生的第一分类结果、第二分类结果及第三分类结果进行集成,得到集成数据;然后利用浅层神经网络对心律失常集成数据进行分类,得到最终的心率失常分类融合结果。如此,本发明将XGBoost、GBDT、BiGRU三种基分类器的分类结果利用Stacking集成规则进行融合,采用机器学习模型与深度学习模型相结合的方法,提升了心律失常整体分类性能及准确率。
技术领域
本发明涉及医学信号处理技术领域,具体为一种基于改进多基分类器集成的自动心律失常分析方法。
背景技术
心律指心跳的节奏。正常人的心脏跳动频率每分钟约为60~100次,并且健康的心律应该是十分均匀的,心脏病或心脏神经调节功能不正常时,可出现心律不齐或心律失常。心律失常是心血管疾病常见且最为严重的病症之一,可导致患者突然死亡,严重威胁人类健康。
如今,随着人工智能技术的发展,智能辅助诊断系统因其快速、可靠的特点已成为最具前景的临床诊断解决方案。由于心电远程监护技术的迅速发展和普及,以及当下可穿戴设备的流行我们可以很容易地得到病人的心电信号以及其他生理特征。传统上,医生可以通过观察心电信号中蕴含的信息来判断病人是否患心律失常,然而仅通过观察变化微弱的心电信号来推断病人状态的过程是费力的,并且容易因复杂的心电变化而产生错误的判断。因此,利用计算机来进行智能辅助的诊断系统可以克服对心电信号的评估限制,从而更好的辅助医生对病人心律失常的患病情况进行推断。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种基于改进多基分类器集成的自动心律失常分析方法,提升心律失常的检测效果。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种基于改进多基分类器集成的自动心律失常分析方法,包括以下步骤:
S1:数据预处理,读入12导联的心电信号的数据,采用小波变换滤除原始心电信号中的工频干扰,采用巴特沃斯带阻滤波器滤除肌电干扰,采用中值滤波滤除原始心电信号中的基线漂移;
S2:心拍数据提取,通过小波变换检测R波位置,进而对R波前后数据点进行固定长度截取,从而完成对心拍数据提取;
S3:基分类器模型构建,包括用以对心电图数据进行心律失常自动分类的XGBoost分类模块、GBDT分类模块、BiGRU分类模块;其中,XGBoost作为第一基分类模块、GBDT作为第二基分类模块、GRU作为第三基分类模块,通过对训练数据进行K折交叉的划分,使得XGBoost输出K个第一分类结果,GBDT输出K个第二分类结果,BiGRU输出K个第三分类结果;
S4:模型融合,依据模型集成规则—Stacking,将分类模块产生的第一分类结果、第二分类结果及第三分类结果进行集成,得到集成数据,然后搭建好浅层神经网络以对心律失常集成数据进行分类;
S5:训练模型参数,初始化所述集成模型的参数,将构建好的数据集拆分为训练集和测试集;利用训练集样本对集成模型进行训练,生成所述集成模型的参数并保存;
S6:模型预测,对测试集样本进行自动识别,获得心律失常的二分类结果。
优选的,步骤S2具体包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京芯动卫士科技有限公司,未经北京芯动卫士科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110343071.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种用于电力系统的曲面测温装置
- 下一篇:一种全包围式冰箱防护装置及包装方法