[发明专利]一种习题预测方法、系统、设备及存储介质有效

专利信息
申请号: 202010656451.6 申请日: 2020-07-09
公开(公告)号: CN111898803B 公开(公告)日: 2023-10-24
发明(设计)人: 孙霞;李博;冯筠 申请(专利权)人: 西北大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/20;G09B7/04
代理公司: 西安恒泰知识产权代理事务所 61216 代理人: 李婷
地址: 710069 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 习题 预测 方法 系统 设备 存储 介质
【说明书】:

发明公开了一种习题预测方法、系统、设备及存储介质,包括从答题记录模型中获取答题记录信息,构建答题记录三元组向量模型;从习题‑知识点关联模型中获取习题‑知识点关联信息,基于答题记录三元组向量模型R和习题‑知识点关联模型生成习题难度模型和学生能力模型;由答题记录三元组向量模型R、习题难度和学生能力模型得到损失函数,由损失函数迭代更新至迭代次数达到上限,得到学生‑因子矩阵元素和习题‑因子矩阵元素;将学生‑因子矩阵元素和习题‑因子矩阵元素进行元素乘积运算,得到习题预测模型,生成预测习题。本发明解决现有技术中存在的无法自适应学生学习进度,知识点掌握水平动态变化,而实现习题个性化预测的技术问题。

技术领域

本发明属于智能教育领域,具体涉及一种习题预测方法、系统、设备及存储介质。

背景技术

传统课堂教育和在线学习平台,都收集并存储了大量的学生习题作答记录。如何根据这些作答记录来挖掘学生和习题信息,检验学生是否已经掌握课程的知识点,提高学生的学习效率,帮助学生选择合适的习题予以学习,受到了智能教育领域相关人员和社会各届的广泛关注。

习题预测算法通过学生的作答记录预测学生未做过习题的得分,之后再根据预测值为学生选择合适的习题,这种方式实现深度挖掘学习行为模式,揭示习题数据之间隐藏的关系和模式,了解学生掌握知识的过程,从而有助于掌握学生的学习规律,便于更全面地评价学生及个性化干预指导。通过优化学习过程,有利于学习能力的提高和学习兴趣的培养和思考能力的提升,提供个性化的服务,做到因材施教。

目前,已有多种算法应用于习题预测领域,其中最常用的三种模型有知识追踪模型、认知诊断模型和矩阵分解模型。知识追踪模型通过跟踪学生的习题记录,获取其知识点掌握程度以实现预测学生答题的正确性,但由于在一定程度上代表学生的平均水平,其缺陷在于:无法做到个性化习题预测;认知诊断模型源于教育心理学,是一种通过从答题记录中发现学生状态来预测学生表现的技术,其缺陷在于:存在着高额时间复杂度的问题,难以处理大规模习题记录;矩阵分解模型的缺陷在于:对观测数据与缺失数据权重设置均衡不切实际,更新模型仍需递归计算。

发明内容

针对上述现有技术的不足与缺陷,本发明的目的在于提供一种习题预测方法,以解决现有技术中存在的无法自适应学生学习进度,知识点掌握水平动态变化,而实现习题个性化预测的技术问题。

为了实现上述任务,本发明采用以下技术方案:

一种习题预测方法,该方法包括如下步骤:

步骤1,从答题记录模型中获取答题记录信息,从得到的答题记录模型中提取答题记录三元组向量,构建答题记录三元组向量模型Ru,i,rui,其中u表示学生编号、i表示习题编号、rui表示学生u解答习题i的正确性;

步骤2,从习题-知识点关联模型中获取习题-知识点关联信息,基于答题记录三元组向量模型R和习题-知识点关联模型生成习题难度模型和学生能力模型;

步骤3,由答题记录三元组向量模型R、习题难度和学生能力模型得到损失函数,由损失函数迭代更新至迭代次数达到上限,得到学生-因子矩阵元素和习题-因子矩阵元素;

步骤4,将学生-因子矩阵元素和习题-因子矩阵元素进行元素乘积运算,得到习题预测模型,生成预测习题,并将预测得到的习题推送至学生答题界面。

进一步地,步骤2中所述的由习题-知识点关联模型生成习题难度模型和学生能力模型,包括:

步骤2.1、基于习题-知识点关联模型,由式(1)得出习题难度模型的元素:

dui=Qij*(failure(xuj)-success(xuj)) 式(1)

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010656451.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top