[发明专利]停车场泊位占用率预测方法、装置、设备及存储介质有效

专利信息
申请号: 201711387746.2 申请日: 2017-12-20
公开(公告)号: CN108010378B 公开(公告)日: 2020-05-22
发明(设计)人: 彭磊;李慧云;房祥彦 申请(专利权)人: 中国科学院深圳先进技术研究院
主分类号: G08G1/14 分类号: G08G1/14;G06Q10/04
代理公司: 深圳智趣知识产权代理事务所(普通合伙) 44486 代理人: 邵萌
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 停车场 泊位 占用率 预测 方法 装置 设备 存储 介质
【说明书】:

发明适用信息技术领域,提供了一种停车场泊位占用率预测方法、装置、设备及存储介质,该方法包括:当接收到停车场在预设时间点的泊位预测请求时,从停车场的历史数据中获取停车场在最后记录时间点的空闲泊位数量,通过预先训练好的混合预测模型和最后记录时间点的空闲泊位数量,对停车场在预设时间点的空闲泊位数量进行预测,根据预测得到的、停车场在预设时间点的空闲泊位数量,获得停车场在预设时间点的泊位占用率并输出,其中,混合预测模型通过小波神经网络和非平稳随机过程结合训练得到,从而实现泊位占用率的中长期预测,有效地降低了泊位占用率预测的计算复杂度,有效地提高了泊位占用率预测的准确度,进而提高了泊位占用率预测的效率。

技术领域

本发明属于信息技术领域,尤其涉及一种停车场泊位占用率预测方法、装置、设备及存储介质。

背景技术

由于车辆数目的激增、以及国内城市早期规划未长远考虑到车辆停放问题,国内大中城市热点区域所提供的停车位远远少于进入的车辆,使得车辆在寻找停车位的过程中,花费大量时间、浪费不必要的能源,甚至引发交通堵塞,在短期内增加这些区域的停车位供应比较困难,所以提高这些区域内的停车位利用率就变得非常重要。

提高停车位利用率需要通过将车位信息实时推送给有需要的车辆来帮助车辆快速找到车位,即研究人员提出的停车诱导系统(PGIS,Parking Guidance andInformation)。PGIS在对车辆进行诱导时,车辆距离停车场还有一定距离,PGIS需要估算车辆抵达停车场的时间点、以及这个时间点上停车场内空闲泊位的数量,因此PGIS需要实现未来一段时间内停车场的空闲泊位预测,这本质上是一个基于时间序列的预测问题,在这类预测问题上自回归积分滑动平均模型(ARIMA)、小波神经网络(WNN)或者长短期记忆网络(LSTM)都能实现较为准确的短临预测,然而这些模型需要实时数据的支撑,下一时刻预测的精准度同刚过去的几个连续时间步的数据关联性很高,停车场产权分散,不同停车场间的设备难以互联,且缺乏统一的城市级泊位监测平台,使得大量的停车场实时数据难以获得。

此外,基于停车场的历史数据进行分析和预测的方法需要结合中长期预测技术实现,目前用于中长期预测的方法主要为最大李雅普诺夫指数法,最大李雅普诺夫指数法的本质是对混沌性的检测,在预测周期持续增长时,会出现很大的偏差,而且该方法每次预测时均需对相空间进行重构,计算复杂度较高。

发明内容

本发明的目的在于提供一种停车场泊位占用率预测方法、装置、设备及存储介质,旨在解决现有技术中停车场空闲泊位中长期预测的计算复杂度较高、容易出现较大偏差,导致停车场空闲泊位中长期预测的效率不高、准确度不高的问题。

一方面,本发明提供了一种停车场泊位占用率预测方法,所述方法包括下述步骤:

当接收到停车场在预设时间点的泊位预测请求时,从所述停车场的历史数据中获取所述停车场在最后记录时间点的空闲泊位数量;

通过预先训练好的混合预测模型和所述最后记录时间点的空闲泊位数量,对所述停车场在所述预设时间点的空闲泊位数量进行预测,所述混合预测模型通过预设的小波神经网络和预设的非平稳随机过程结合训练得到;

根据预测得到的、所述停车场在所述预设时间点的空闲泊位数量,获得所述停车场在所述预设时间点的泊位占用率并输出。

另一方面,本发明提供了一种停车场泊位占用率预测装置,所述装置包括:

泊位数量获取单元,用于当接收到停车场在预设时间点的泊位预测请求时,从所述停车场的历史数据中获取所述停车场在最后记录时间点的空闲泊位数量;

泊位预测单元,用于通过预先训练好的混合预测模型和所述最后记录时间点的空闲泊位数量,对所述停车场在所述预设时间点的空闲泊位数量进行预测,所述混合预测模型通过预设的小波神经网络和预设的非平稳随机过程结合训练得到;以及

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711387746.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top