[发明专利]图像二值化分割方法有效

专利信息
申请号: 201711339682.9 申请日: 2017-12-14
公开(公告)号: CN107945200B 公开(公告)日: 2021-08-03
发明(设计)人: 李艳鸽;韩征;王卫东;黄健陵;陈光齐 申请(专利权)人: 中南大学
主分类号: G06T7/136 分类号: G06T7/136;G06T7/194
代理公司: 长沙永星专利商标事务所(普通合伙) 43001 代理人: 周咏;米中业
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 化分 方法
【说明书】:

发明公开了一种图像二值化分割方法,包括获取目标图像;将目标图像分割为若干张子图像;计算各子图像的均值、方差和灰度值;计算二值化分割的最佳阈值;各子图像的灰度值最佳阈值比较从而将子图像中的像素点标记为目标图像或背景图像;重复上述步骤并计算目标图像中各个像素点被标记为目标图像获背景图像的概率;将各个像素点被标记为目标图像或背景图像的概率与门限值进行对比,从而将目标图像中的各个像素点标记为目标图像或背景图像,完成目标图像的二值化分割。本发明方法在大区域、不均匀光照条件下影像识别效果较好,而且方法客观,科学,简单,方便。

技术领域

本发明具体涉及一种图像二值化分割方法。

背景技术

随着国家经济技术的发展和人们生活水平的提高,图像处理技术已经广泛应用于人们的生产和生活之中,给人们的生产和生活带来了无尽的便利。

图像分割方法是图像处理的重要手段。图像分割是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程,它是由图像处理到图像分析的关键步骤,其分割结果的正确性直接影响着目标检测和识别的智能化程度。图像分割方法经历数十年的发展,出现了大量不同类型的算法。目前图像分割法大致可分为:基于阈值的方法、基于区域的方法、基于边缘的方法、区域与边缘相结合的方法以及多尺度分割法等几大类。除此之外,神经网络、模糊数学、数学形态学等理论近年来也广泛应用于图像分割领域,涌现出众多新算法。这些算法原理虽各不相同,但基本都利用了图像覆盖的各类信息,如光谱信息、纹理信息、不同时相和不同传感器的信息等。在诸多分割方法中,二值化方法是一种特殊的图像分割技术,目的是将图像中的目标和背景部分用两种对立的颜色加以标识,以对图像中的目标进行初步判别,为后续的目标特征提取、场景分析等步骤提供基础。其中,应用最广泛的二值化方法是阈值分割法,该类算法给定一个灰度阈值,以此为门限对所有像素实施类别划分。

阈值分割法通常分为两类:全局法和局部法。全局法确定整张影像的单一阈值,并将其与影像各像素灰度值比较,以此分离目标和背景,该法简单且容易实现。局部法将整张影像分成若干具有一定尺寸的子图像,通过确定不同子图像的阈值将单个子图像逐一分类,最终再将子图像分割结果进行拼接,该法可以解决光照不均影响二值化分割结果的问题。总体而言,全局法和局部法存在以下问题:

(1)全局阈值法(如Otsu法)只适合于图像的灰度直方图具有理想的双峰形状,当图像的灰度直方图呈现单峰或者多峰时则效果不甚理想,其分割结果依赖于均匀的光照条件;

(2)局部阈值法(如Niblack法)中的子图像尺寸选择主要采用经验法与试错法,即人为经验性地选取多组子图像尺寸对遥感影像进行二值化分割,最后选择分割结果较为理想的一组。该方法没有考虑影像的整体特征,且实施起来效率很低,主观性很大;

(3)局部阈值法通过将整张影像分解为许多子图像,并采用局部阈值对每张子图像单独进行二值化处理,最后将各子图像分割结果进行拼接。拼接过程中,各子图像在边缘连接处往往会产生分割结果差距较大的现象,导致明显的边界效应存在。

由于以上存在的问题,现有图像二值化方法给影像自动解译带来很大的难度,极易导致目标被误判、漏判。因此,传统的图像阈值分割方法在应用于光谱信息丰富,观测范围大的影像目标识别时必须被改进。

发明内容

本发明的目的在于提供一种在大区域、不均匀光照条件下影像识别效果较好,而且方法客观科学的图像二值化分割方法。

本发明提供的这种图像二值化分割方法,包括如下步骤:

S1.获取目标图像;

S2.将目标图像分割为若干张子图像;

S3.计算步骤S2得到的各子图像的均值、方差和灰度值;

S4.根据步骤S3得到的各子图像的均值和方差计算各子图像二值化分割的最佳阈值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711339682.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top