[发明专利]蚀刻阻挡层结构、含其的外延片及该外延片的制作方法有效
申请号: | 201711243780.2 | 申请日: | 2017-11-30 |
公开(公告)号: | CN108023001B | 公开(公告)日: | 2020-03-10 |
发明(设计)人: | 周圣军;胡红坡;高艺霖 | 申请(专利权)人: | 武汉大学 |
主分类号: | H01L33/00 | 分类号: | H01L33/00 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 张火春 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 蚀刻 阻挡 结构 外延 制作方法 | ||
本发明提供蚀刻阻挡层结构、含其的外延片及该外延片的制作方法,蚀刻阻挡层结构由第一极性反转层、沉积在第一极性反转层上表面的第二半导体层及沉积在所述第二半导体层上表面的第二极性反转层组成。外延片由沉积在图形化衬底上的牺牲层,所述蚀刻阻挡层结构及半导体器件结构组成。在外延片湿法剥离时,所述蚀刻阻挡层结构能够很好的同时保护半导体器件结构免受剥离液的损伤,实用性强。
技术领域
本发明属于半导体领域,尤其涉及蚀刻阻挡层结构、含其的外延片及该外延片的制作方法。
背景技术
湿法剥离是目前进行氮化镓外延层与蓝宝石衬底分离的技术之一。湿法剥离通过化学溶液蚀刻氮化镓外延层与蓝宝石衬底界面处的氮化镓层,实现氮化镓外延层与蓝宝石衬底的分离。关于湿法剥离工艺,需要解决的一个问题是:如何防止化学剥离蚀刻与蓝宝石相邻氮化镓外延层的过程中蚀刻液对半导体器件结构层的过腐蚀,造成器件结构的损伤。
一般而言,采用MOCVD在图形化蓝宝石衬底上外延生长得到的氮化镓其上表面为镓极性面,下表面为氮极性面、朝向蓝宝石衬底。在文献Journal ofCrystal Growth,251,460(2003)中,报道了MBE生长GaN的表面通入Mg和NH3,形成Mg3N2层,实现GaN极性由Ga极性转化为N极性,或由N极性转化为Ga极性。在文献Appllied Physics Letters,77,2479(2000)中,报道了MBE生长重掺Mg的GaN层(掺杂浓度~1020cm-3)使GaN的极性实现了反转。文献Journal ofCrystal Growth,264,150(2004)中,报道了MOCVD生长的GaN表面在低压条件下生长重掺Mg(掺杂浓度~1020cm-3)的AlGaN层实现了GaN由(0001)Ga极性转变为(000-1)N极性。
氮化镓存在镓极性面和氮极性面,镓极性面表面光滑,适合制作高发光效率的半导体发光器件,而氮极性面表面粗糙,不适合制作高发光效率的半导体器件,故一般生长的半导体器件均采用镓极性面。氮化镓发光器件其上表面为镓极性面,那么其与蓝宝石衬底界面则为氮极性面。氮化镓材料的特性之一是镓极性面难以被化学溶液蚀刻,而氮极性面容易被化学溶液蚀刻。
综上所述,在半导体外延片制作过程中,有必要寻找一种利于湿法化学剥离,同时不会损伤半导体器件结构和方法。
发明内容
针对上述技术问题,本发明提供了蚀刻阻挡层结构、含其的外延片及该外延片的制作方法。
为了解决上述技术问题,本发明采用的技术方案为:
一种蚀刻阻挡层结构,其特征在于,其由第一极性反转层、沉积在第一极性反转层上表面的第二半导体层及沉积在所述第二半导体层上表面的第二极性反转层组成。
进一步,所述第一极性反转层为含镁的氮化物;所述第二半导体层为氮化镓,其下表面为镓极性面,上表面为氮极性面;所述第二极性反转层为含镁的氮化物。
再进一步,所述第一极性反转层和第二极性反转层均为含镁的氮化镓。
再进一步,所述第一极性反转层及第二极性反转层的镁原子的含量均大于5e19cm-3。
一种包含所述的蚀刻阻挡层结构的外延片,包括半导体器件结构和沉积在图形化衬底上的牺牲层,其特征在于,所述牺牲层为第一半导体层,所述蚀刻阻挡层的第一极性反转层沉积在所述第一半导体层上表面,所述半导体器件结构沉积在所述蚀刻阻挡层的第二极性反转层的上表面。
进一步,所述第一半导体层为氮化镓,其下表面为氮极性面,上表面为镓极性面;所述第一极性反转层为含镁的氮化物;所述第二半导体层为氮化镓,其下表面为镓极性面,上表面为氮极性面;所述第二极性反转层为含镁的氮化物。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711243780.2/2.html,转载请声明来源钻瓜专利网。