[发明专利]基于暗原色和双边滤波的低照度图像自适应增强方法有效

专利信息
申请号: 201611138476.7 申请日: 2016-12-09
公开(公告)号: CN106780381B 公开(公告)日: 2020-01-14
发明(设计)人: 杨爱萍;宋曹春洋;白煌煌;王建 申请(专利权)人: 天津大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 12201 天津市北洋有限责任专利代理事务所 代理人: 李丽萍
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 原色 双边 滤波 照度 图像 自适应 增强 方法
【说明书】:

发明公开了一种基于暗原色和双边滤波的低照度图像自适应增强方法,步骤是:将低照度图像反转后计算其透射率,并估计图像深度得到暗原色图像,将低照度图像从RGB空间转到HSV空间,对V空间图像和暗原色图像分别进行色调映射后进行融合,然后对融合后的V空间图像进行双边滤波,将滤波后的V空间图像、低照度图像的H空间图像和低照度图像的S空间图像结合,最后将结合后的图像从HSV空间转换到RGB空间,从而得到最终增强图像。本发明方法实现图像的自适应增强,并利用低照度图像的暗原色图的特征来增强图像的细节信息;利用双边滤波滤除图像噪声。该方法不仅能够有效提高图像的整体亮度、局部对比度,同时可突出图像细节,减少噪声。

技术领域

本发明属计算机图像处理领域,尤其涉及一种用于低照度图像的增强方法。

背景技术

在光照不足的场景如傍晚或夜晚等环境下拍摄的图像存在曝光不足、对比度低和噪声严重等缺点,这对交通路况、视频监控和罪犯特征识别等应用造成了极大的影响。因此,研究低照度图像增强具有重要的应用价值。

现有的低照度图像增强方法主要有直方图均衡化算法[6]、基于图像融合的算法、色调映射算法[3]以及基于暗原色先验的算法[5]。色调映射方法通过映射函数对像素进行灰度变换,提高图像暗区的亮度,其算法简单,计算速度快,但目前的色调映射方法在映射时容易将图像中的噪声放大。基于暗原色先验的方法[2]利用低照度图像反转与雾天图像的相似性[5],根据大气散射模型对低照度图像进行增强。该方法能较好地提升图像整体亮度,但由于假定透射率在局部区域内恒定而易产生块效应。

增强后的低照度图像需要使用合适的滤波方法滤除图像中的噪声,主要有均值滤波、中值滤波和双边滤波[4]方法。双边滤波将像素距离和像素强度差作为权重影响因子,该方法能较好地在滤除图像噪声的同时保持景物的边缘信息。

[参考文献]

[1]F.Drago,K.Myszkowski,T.Annen and N.Chiba,“Adaptive logarithmicmapping for displaying high contrast scenes”,in Proc.EUROGRAPHICS,vol.22,no.3,pp.419-426,2003.

[2]He K,Sun J,Tang X.Single image haze removal using dark channelprior[J].Pattern Analysis and Ma-chine Intelligence,IEEE Transactions on,2011,33(12):2341-2353.

[3]Z.J.Zhou,N.Sang,X.R.Hu,Global brightness and local contrastadaptive enhancement for low illumination color image,Optik,v 125,n 6,p 1795-1799,March 2014.

[4]Tomasi C,Manduchi R.Bilateral Filtering for Gray and Color Images[J].Iccv,1998:839-846.

[5]X.Dong,J.T.Wen,W.X.Li,An efficient and integrated algorithm forvideo enhancement in challenging lighting conditions,in Proceedings ofInstitute of Electrical and Electronic Engineers International Conference onComputer Vision and Pattern Recognition,pp.1241-1249,2011.

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611138476.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top