[发明专利]多变量时间序列数据异常检测、模型训练方法和系统有效
申请号: | 202310531272.3 | 申请日: | 2023-05-12 |
公开(公告)号: | CN116304604B | 公开(公告)日: | 2023-08-18 |
发明(设计)人: | 乔焰;张本初;胡荣耀;赵培;袁新宇;魏振春 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | G06F18/21 | 分类号: | G06F18/21;G06F18/24;G06F18/214;G06N3/0475;G06N3/088 |
代理公司: | 合肥和瑞知识产权代理事务所(普通合伙) 34118 | 代理人: | 金宇平 |
地址: | 230009 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及数据检测技术领域,尤其涉及一种多变量时间序列数据异常检测、模型训练方法和系统,解决了现有各类技术在多变量时间序列异常数据检测时,存在的受噪声影响大、检测效果不理想、无法实现实时检测的问题。本发明提出的一种多变量时间序列数据异常检测模型训练方法,额外增加了用以消除噪声影响的自适应权重和过滤模块,并采用对比学习的方法学习数据特征,以提升模型的泛化能力。本发明在异常检测阶段,着重考虑重构误差,并设计了用于评估数据异常程度的评价函数,本发明训练的异常检测模型具有更好的F1得分,展现模型在鲁棒性上显著超越了现有技术。 | ||
搜索关键词: | 多变 时间 序列 数据 异常 检测 模型 训练 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310531272.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种结合非临床数据的药物不良反应预测方法和系统
- 下一篇:铁路货车主阀装配线
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置