[发明专利]基于Transformer问题关键词预测的多样性问题自动生成方法有效
申请号: | 202310331534.1 | 申请日: | 2023-03-31 |
公开(公告)号: | CN116050401B | 公开(公告)日: | 2023-07-25 |
发明(设计)人: | 周菊香;周明涛;李子杰;甘健侯;陈恳;徐坚 | 申请(专利权)人: | 云南师范大学 |
主分类号: | G06F40/284 | 分类号: | G06F40/284;G06F40/216;G06F40/30;G06N3/0442;G06N3/045;G06N3/0464;G06N3/08;G06Q30/0601 |
代理公司: | 昆明明润知识产权代理事务所(普通合伙) 53215 | 代理人: | 王鹏飞 |
地址: | 650500 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于Transformer问题关键词预测的多样性问题自动生成方法,属于自然语言处理领域。该方法包括:首先对数据集进行编码,然后构建一个基于Transformer的问题关键词预测器,通过增强基于GRU网络的编码器‑解码器模型的输入端,最后在解码器的输出端采取谱聚类和集束搜索的解码方式生成多样性问题。本发明针对商品网站中潜在的商品信息缺失问题进行研究,采用深度学习的方法,自动生成辅助商家识别发布的商品信息缺失的问题,使用生成的多样性问题来提醒商家完善商品的描述信息。实验结果表明,本发明在自动评估方面都优于以往传统的方法。 | ||
搜索关键词: | 基于 transformer 问题 关键词 预测 多样性 自动 生成 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于云南师范大学,未经云南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310331534.1/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法