[发明专利]一种基于SHAP的1D-CNN网络流量分类模型的可解释方法有效

专利信息
申请号: 202210748434.4 申请日: 2022-06-28
公开(公告)号: CN115242458B 公开(公告)日: 2023-07-07
发明(设计)人: 王攀;缪程 申请(专利权)人: 南京邮电大学
主分类号: H04L9/40 分类号: H04L9/40;H04L47/2441;G06F18/24;G06N3/0464;G06N3/048;G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 陈月菊
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于SHAP的1D‑CNN网络流量分类模型的可解释方法,包括:采集网络流量数据并划分为训练集和测试集;采用主客观方式分别对每种网络流量类别的特征进行权重赋值,两者相加得到最终特征权重值;构建1D‑CNN分类模型并基于训练集进行训练,将测试数据输入训练好的模型,基于SHAP对模型预测结果进行解释,根据模型预测的分类结果选取相应网络流量类别的特征权重,再根据SHAP的解释结果,比较正反向推动结果的特征权重值之和来判断模型预测是否合理。本发明实现了对1D‑CNN网络流量分类模型进行解释,验证了模型预测的合理性,提高了模型的准确性和透明性,有效解决了模型黑匣子的问题。
搜索关键词: 一种 基于 shap cnn 网络流量 分类 模型 可解释 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210748434.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top