[发明专利]一种基于元学习和改进的Catboost算法的债券违约预测方法在审

专利信息
申请号: 202210502069.9 申请日: 2022-05-10
公开(公告)号: CN114881797A 公开(公告)日: 2022-08-09
发明(设计)人: 张永全;杨秀银;武鑫 申请(专利权)人: 浙江财经大学
主分类号: G06Q40/06 分类号: G06Q40/06;G06Q10/04;G06K9/62
代理公司: 杭州兴知捷专利代理事务所(特殊普通合伙) 33338 代理人: 林振兴
地址: 310012 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种债券违约预测识别的技术,具体涉及一种基于元学习和改进的Catboost算法的债券违约预测方法,属于金融信息数据管理技术。首先经过K近邻算法进行缺失值填补和标准化处理,然后利用基于元学习框架的显式梯度学习数据增强方法对不平衡数据进行处理,得到经过不平衡处理后的数据,接着利用相关分析和随机森林算法进行特征筛选,最后利用以改进的GHMNALoss为损失函数的Catboost算法模型进行训练,得到每个债券的违约预测结果。本发明能避免对不平衡数据集导致的债券违约预测效果不佳的问题,并对不同类型的债券违约预测都能达到较好的结果。
搜索关键词: 一种 基于 学习 改进 catboost 算法 债券 违约 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江财经大学,未经浙江财经大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210502069.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top