[发明专利]基于卷积神经网络和改进级联标注的快速关系抽取方法有效

专利信息
申请号: 202210442561.1 申请日: 2022-04-26
公开(公告)号: CN114548090B 公开(公告)日: 2022-07-26
发明(设计)人: 汪鹏;李国正 申请(专利权)人: 东南大学
主分类号: G06F40/279 分类号: G06F40/279;G06F40/126;G06N3/04;G06N3/08
代理公司: 南京众联专利代理有限公司 32206 代理人: 蒋昱
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于卷积神经网络和改进级联标注的快速关系抽取方法。首先,基于由膨胀卷积、门控单元和残差连接组成的深度神经网络的文本编码器将初始文本进行编码,得到具有丰富上下文语义的文本编码表示。然后,根据得到的文本编码,采用改进级联标注,头实体标注器标注出所有头实体的跨度以及它们对应的实体类型。接着,通过文本编码表示和头实体的特征表示,尾实体标注器标注出每个头实体对应的所有的尾实体。最后,通过真实世界中的关系抽取任务来验证。本发明具有快速的训练和预测优势,能满足面向海量文本的关系抽取场景的需求。
搜索关键词: 基于 卷积 神经网络 改进 级联 标注 快速 关系 抽取 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210442561.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top