[发明专利]基于夏普利值的联邦学习移动设备分布数据处理方法在审

专利信息
申请号: 202210436896.2 申请日: 2022-04-15
公开(公告)号: CN114912626A 公开(公告)日: 2022-08-16
发明(设计)人: 郑臻哲;公辰;吴帆;陈贵海 申请(专利权)人: 上海交通大学
主分类号: G06N20/00 分类号: G06N20/00;G06K9/62
代理公司: 上海交达专利事务所 31201 代理人: 王毓理;王锡麟
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于夏普利值的联邦学习移动设备分布数据处理方法,将多个移动设备构建联邦学习集群,在联邦学习的每一轮中,中心节点应用Monte‑Carlo采样方法估计各个联邦学习移动设备当前的联邦夏普利值,并将其在全局模型参数相对于初始参数的变化方向上的投影作为其对模型的重要性与贡献度,并基于联邦夏普利值选择联邦学习移动设备参与本轮的模型训练能够有效加快模型收敛速度,提升模型最终的精度。本发明能够衡量各个移动终端的数据集对模型训练过程的影响,从而在每轮选择高贡献度的设备参与训练,减少数据通信开销,加快收敛速度,提升模型表现。
搜索关键词: 基于 夏普 联邦 学习 移动 设备 分布 数据处理 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210436896.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top