[发明专利]一种基于无中心流式联邦学习的隐私保护方法、系统及终端在审
申请号: | 202210085813.X | 申请日: | 2022-01-25 |
公开(公告)号: | CN114417420A | 公开(公告)日: | 2022-04-29 |
发明(设计)人: | 杨树森;任雪斌;赵鹏 | 申请(专利权)人: | 杭州卷积云科技有限公司 |
主分类号: | G06F21/62 | 分类号: | G06F21/62;G06K9/62;G06N20/00 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 张宇鸽 |
地址: | 310000 浙江省杭州市余杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于无中心流式联邦学习的隐私保护方法、系统及终端,通过边缘节点根据本地的实时数据流进行在线学习,然后基于本地模型参数的变化自适应地决定节点间通信交互时机,在通信交互时对模型参数进行基于拉普拉斯机制的隐私保护后与相邻节点进行广播式交互共享,而非通信交互时刻不进行参数传递以降低通信开销和隐私预算。最终,达到边缘节点在隐私保护的前提下协同地对全局数据流动态的模型训练和更新。本发明在实际大规模的分布式节点协同在线机器学习的隐私保护景中有着较好的应用效果,可用于在车联网驾驶智能、移动社交和在线推荐等应用场景中的数据隐私保护场景中。 | ||
搜索关键词: | 一种 基于 中心 联邦 学习 隐私 保护 方法 系统 终端 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州卷积云科技有限公司,未经杭州卷积云科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210085813.X/,转载请声明来源钻瓜专利网。
- 上一篇:紧凑型宽带新月形贴片对天线
- 下一篇:一种金属结构件及其制备方法