[发明专利]基于图卷积神经网络的电力设备故障智能预测方法在审
申请号: | 202111542143.1 | 申请日: | 2021-12-16 |
公开(公告)号: | CN114266301A | 公开(公告)日: | 2022-04-01 |
发明(设计)人: | 黄万伟;黄敏;张超钦;张王卫;王博;孙海燕;马欢;郑向雨;李松 | 申请(专利权)人: | 郑州轻工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06Q50/06 |
代理公司: | 郑州优盾知识产权代理有限公司 41125 | 代理人: | 栗改 |
地址: | 450000 河南省郑州*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于图卷积神经网络的电力设备故障智能预测方法,步骤如下:采集待预测的电力设备的历史监测信息,对历史监测信息进行预处理,预处理后的监测信息和电力数据中心采集的数据集组成训练样本;构建图卷积神经网络,初始化神经网络参数;将监测信息作为图卷积神经网络的每个节点的输入,利用图卷积神经网络对监测信息进行故障分类;利用训练样本对步骤二构建的图卷积神经网络进行训练,得到优化图卷积神经网络模型;采集待检测设备的实时监测信息并进行预处理,将预处理后的监测信息输入到优化图卷积神经网络模型,获得故障预测结果。本发明具有较好的通用性,预测准确率较高,使用、部署和升级维护简单,无需硬件设备的升级改造。 | ||
搜索关键词: | 基于 图卷 神经网络 电力设备 故障 智能 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州轻工业大学,未经郑州轻工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111542143.1/,转载请声明来源钻瓜专利网。