[发明专利]一种基于聚类的图联邦学习的用户位置预测框架在审

专利信息
申请号: 202111397483.X 申请日: 2021-11-23
公开(公告)号: CN114077901A 公开(公告)日: 2022-02-22
发明(设计)人: 张啸;王麒麟;叶梓铭;于东晓 申请(专利权)人: 山东大学
主分类号: G06N20/20 分类号: G06N20/20;G06F21/62;G06K9/62;G06N3/04;G06N3/08
代理公司: 青岛华慧泽专利代理事务所(普通合伙) 37247 代理人: 付秀颖
地址: 250013 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于聚类的图联邦学习的用户位置预测框架,包括如下步骤:S1.用户在本地使用序列预测模型进行训练;S2.用户将模型参数及原始序列数据经过编码器之后的隐含状态上传至服务器;S3.利用隐含状态学习相似图结构;S4.通过图卷积神经网络获得用户的嵌入表示;S5.通过聚类方法将用户分为多个簇,每个簇中的用户执行联邦平均算法;S6.将嵌入表示和平均后的模型参数下载到相应用户,各个用户将隐含状态和嵌入表示进行拼接,之后输出预测结果,并对服务器模型参数进行更新。其优点在于,联邦学习保护了数据隐私;图卷积网络解决标签稀缺所带来的的训练成本不足的问题;图聚类算法使更相似的用户执行联邦平均算法从而解决用户间异构性的问题。
搜索关键词: 一种 基于 联邦 学习 用户 位置 预测 框架
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111397483.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top