[发明专利]一种基于机器学习的SDN流表溢出攻击检测与缓解方法有效
申请号: | 202111323738.8 | 申请日: | 2021-11-10 |
公开(公告)号: | CN114050928B | 公开(公告)日: | 2023-02-03 |
发明(设计)人: | 汤澹;严裕东;张冬朔;王思苑;王小彩;李诗宇 | 申请(专利权)人: | 湖南大学 |
主分类号: | H04L9/40 | 分类号: | H04L9/40;G06N20/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 410082 湖南省*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于机器学习的SDN流表溢出攻击检测与缓解方法,属于网络安全领域。所述方法包括:基于OpenFlow协议,轮询OpenvSwitch流表项,形成原始数据;解析流表项的各字段,分为“特征”和“标识”两组,结合网络测量准则,计算流表项的五种特征及其属于“大象流”、“小鼠流”和“攻击流”的标签,作为原始数据集;采用监督学习训练流表项分类模型,并部署在OpenvSwitch中;OpenvSwitch中的实时攻击缓解系统监控流表占用率,若超过阈值,则判定发生流表溢出攻击,系统利用模型预测流表项的驱逐得分并排序,按顺序删除一定数量的流表项以释放流表空间。本发明中的流表溢出攻击检测与缓解方法检测率高,系统开销低,兼容SDN环境,能实现对流表溢出攻击的精准检测和实时缓解。 | ||
搜索关键词: | 一种 基于 机器 学习 sdn 溢出 攻击 检测 缓解 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111323738.8/,转载请声明来源钻瓜专利网。