[发明专利]一种基于改进卷积神经网络的太阳能电池板故障识别方法在审

专利信息
申请号: 202111210588.X 申请日: 2021-10-18
公开(公告)号: CN114022694A 公开(公告)日: 2022-02-08
发明(设计)人: 靳昌伟;廖斌;其他发明人请求不公开姓名 申请(专利权)人: 华北电力大学
主分类号: G06V10/762 分类号: G06V10/762;G06V10/82;G06K9/62;G06N3/04;G06N3/08;H01L21/66
代理公司: 暂无信息 代理人: 暂无信息
地址: 102206 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进卷积神经网络的太阳能电池板故障识别方法,本发明通过太阳能电池板电致发光原理采集得到故障图像,分析故障图像特征,采取图像样本统一格式、图像剪裁和大小调整、去均值、归一化、图像增强等预处理操作得到数据集;结合太阳能电池板故障图像数据集的特点,采用学习率配置优化方法、聚类算法确定最优锚框和非极大值抑制避免多个锚框等方法,改进了YOLOv3神经网络;针对故障图像的类型、位置的表型形式有很多种,提出基于卷积神经网络的太阳能电池板故障识别系统,建立了故障图像识别分类方法。本发明改进了之前故障识别系统无法识别具体故障的问题,可以准确的对具体故障类型进行判断和位置识别。
搜索关键词: 一种 基于 改进 卷积 神经网络 太阳能 电池板 故障 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111210588.X/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top