[发明专利]基于自编码和极限学习机的药品分类方法在审
申请号: | 202110947526.0 | 申请日: | 2021-08-18 |
公开(公告)号: | CN113627554A | 公开(公告)日: | 2021-11-09 |
发明(设计)人: | 杨新武;李亦铭;王碧瑾 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 张慧 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明针对药品的近红外光谱数据的分类问题,提出了一种基于自编码网络与极限学习机的双波段光谱鉴别方法(DWAE‑ELM),此方法结合了AE和ELM两种方法的优点,使用AE提取药品的近红外光谱数据的二维特征,根据此特征使用ELM进行分类。DWAE‑ELM网络在结构上分为两个独立的阶段:第一阶段,采用一个三层的AE网络来提取双波段变换后的二维输入数据的稀疏特征进行非监督多层次特征表示;第二阶段,用原始的ELM做最后的药品分类任务。本方法结合了自编码网络特征提取能力强和ELM训练速度快的优点,提高了药品分类的准确度及稳定性,并和其他方法相比,模型的训练时间大幅降低,且对训练集大小不敏感,鲁棒性更强。 | ||
搜索关键词: | 基于 编码 极限 学习机 药品 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110947526.0/,转载请声明来源钻瓜专利网。