[发明专利]集成小波分解与深度神经网络的水质指标多步预测方法在审
申请号: | 202110784806.4 | 申请日: | 2021-07-12 |
公开(公告)号: | CN113537586A | 公开(公告)日: | 2021-10-22 |
发明(设计)人: | 杜震洪;王昱文;汪愿愿;张丰;吴森森 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/04;G06N3/08;G01N33/18 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 傅朝栋;张法高 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种集成小波分解与深度神经网络的水质指标多步预测方法。其步骤如下:1)对原始水质指标的监测历史数据使用线性插值法填补缺失值;2)对填补缺失值后的数据进行离散小波变换;3)基于双向门控循环单元构建编码器,构建基于单向门控循环单元与全连接层的解码器,结合注意力机制提取解码器每步隐藏层状态与编码器所有隐藏层状态的相关关系,结合编码器和解码器构建神经网络模型,以小波分解后获得的多个分解序列作为输入。本方法的优点在于充分考虑水质数据非线性、波动复杂的特点,减弱噪音影响,自适应提取各步历史数据的影响程度,一步式、端到端预测未来多周的水质指标,对于水资源管理与生态保障具有实际应用价值。 | ||
搜索关键词: | 集成 分解 深度 神经网络 水质 指标 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110784806.4/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理