[发明专利]多模态数据缺失下的无监督异常检测方法有效

专利信息
申请号: 202110474161.4 申请日: 2021-04-29
公开(公告)号: CN113255733B 公开(公告)日: 2023-04-07
发明(设计)人: 陈景龙;冯勇;訾艳阳 申请(专利权)人: 西安交通大学
主分类号: G06F18/214 分类号: G06F18/214;G06F18/2321;G06N3/0464;G06N3/088
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 李鹏威
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种多模态数据缺失下的无监督异常检测方法,利用多个工业传感器采集机械设备运行状态数据,建立多模态数据集,对该数据集进行预处理,并将预处理后的数据集划分为训练集与测试集;构建用于多模态数据缺失下异常检测的无监督深度网络模型;然后使用训练集对所构建的深度模型进行训练;对训练集进行推理并得到训练集样本异常值,使用核密度估计重建训练集样本异常值的概率分布,根据该分布和置信度确定异常检测阈值;对测试集进行推理并得到测试集样本的异常值,根据阈值给出测试集样本的异常检测结果。本发明基于无监督学习框架,充分挖掘和利用多模态数据信息,为在任意模态数据缺失下的异常检测提供了一种有效方案。
搜索关键词: 多模态 数据 缺失 监督 异常 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110474161.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top