[发明专利]一种基于多分类器融合的智能电表故障预测方法有效
申请号: | 202110472639.X | 申请日: | 2021-04-29 |
公开(公告)号: | CN113011530B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 李宁;郭泽林;袁铁江;张伟;齐尚敏;王永超;韩鑫磊;刘海洋;申李;李娜;田娇娟;余英;张皓淼;费守江;周宜 | 申请(专利权)人: | 国网新疆电力有限公司营销服务中心(资金集约中心;计量中心);国网新疆电力有限公司电力科学研究院;大连理工大学 |
主分类号: | G06F18/2411 | 分类号: | G06F18/2411;G06N3/04;G06N3/084;G06Q10/04;G06Q50/06;G06F18/241 |
代理公司: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 关玲 |
地址: | 830011 新疆维吾尔自治*** | 国省代码: | 新疆;65 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于多分类器融合的智能电表故障预测方法,针对智能电表故障数据规模大、维度高、结构复杂、存在错误及异常数据的特点,采用正态分布补全及箱型图方法,对原始数据集进行缺失值填补及异常值替换;通过计算特征属性与故障类型之间的相关系数,消除冗余及不相关特征,形成特征子集;构建对少数样本过采样、对多数样本进行欠采样的混合采样策略,解决故障数据不平衡问题。计算支持向量机(SVM)、BP神经网络及随机森林算法处理智能电表故障数据的准确率,构建表征各分类器性能的混淆矩阵;考虑各分类器针对不同故障类型的识别能力,为各分类器分配权重,进而构建多分类器决策函数,取权重和最大的类别作为样本的故障预测结果。 | ||
搜索关键词: | 一种 基于 分类 融合 智能 电表 故障 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网新疆电力有限公司营销服务中心(资金集约中心、计量中心);国网新疆电力有限公司电力科学研究院;大连理工大学,未经国网新疆电力有限公司营销服务中心(资金集约中心、计量中心);国网新疆电力有限公司电力科学研究院;大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110472639.X/,转载请声明来源钻瓜专利网。