[发明专利]基于自适应实例分类器细化的弱监督目标检测方法与系统在审

专利信息
申请号: 202011454250.4 申请日: 2020-12-10
公开(公告)号: CN112464877A 公开(公告)日: 2021-03-09
发明(设计)人: 吴志昊;徐勇 申请(专利权)人: 哈尔滨工业大学(深圳)
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06N3/04;G06N3/08
代理公司: 深圳市添源知识产权代理事务所(普通合伙) 44451 代理人: 罗志伟
地址: 518000 广东省深圳市南*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种自适应实例分类器细化的弱监督目标检测方法,包括以下步骤:1)通过骨干网络提取图像中目标候选区域的特征,作为分类器的输入;2)通过多实例检测网络训练基本的分类器,生成下一阶段的监督信息;3)通过自适应实例分类器细化框架逐步训练细化的分类器以尽可能多地检测到完整的目标。本发明的有益效果是:利用候选区域的分数分布和空间相似性,可以尽可能多地检测图像中完整的目标,缓解检测器陷入局部最优状态的问题。
搜索关键词: 基于 自适应 实例 分类 细化 监督 目标 检测 方法 系统
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学(深圳),未经哈尔滨工业大学(深圳)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011454250.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top