[发明专利]一种基于多任务学习时间序列的云平台工作负载预测方法有效
申请号: | 202011396557.3 | 申请日: | 2020-12-03 |
公开(公告)号: | CN112486687B | 公开(公告)日: | 2022-09-27 |
发明(设计)人: | 王进;马梦涵;李辰宇;徐其成;舒雅宁;彭浩;孙开伟;刘彬 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06F9/50 | 分类号: | G06F9/50;G06F11/30;G06N3/04;G06N3/08 |
代理公司: | 重庆辉腾律师事务所 50215 | 代理人: | 王海军 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及大数据处理技术和云平台资源负载技术领域,特别涉及一种基于多任务学习时间序列的云平台工作负载预测方法,包括获取工作负载数据,采用滑动窗口的方法划分数据,对划分的每个时间间隔的数据构建基础特征、交叉特征、时序趋势特征、用户行为关联特征,并采用二维SHAP进行特征选择;将选择的特征输入传入TCN‑LSTM模型中,采用多任务学习的方式,共有三个任务,分别为:预测T时间段的CPU平均利用率、预测T时间段的正在运行的作业数、预测T时间段的平均内存利用率;本发明通过对工作负载相关的指标的历史趋势进行把控,而不单一只关注当前监控点的工作负载情况,快速的感知业务的波峰波谷,从而对云平台的资源进行动态的调度。 | ||
搜索关键词: | 一种 基于 任务 学习 时间 序列 平台 工作 负载 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011396557.3/,转载请声明来源钻瓜专利网。