[发明专利]一种基于外观和动作特征双预测的异常行为检测方法有效
申请号: | 202011263894.5 | 申请日: | 2020-11-12 |
公开(公告)号: | CN113762007B | 公开(公告)日: | 2023-08-01 |
发明(设计)人: | 陈洪刚;李自强;王正勇;何小海;刘强;吴晓红;熊书琪 | 申请(专利权)人: | 四川大学 |
主分类号: | G06V20/40 | 分类号: | G06V20/40;G06V10/82;G06N3/0464;G06N3/0455;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于外观和动作特征双预测的异常行为检测方法,涉及计算机视觉和人工智能领域。方法包括:(1)顺序读取视频帧序列,计算相邻图像的帧间差,获取固定长度的视频帧序列和对应的帧差图序列;(2)利用引入记忆增强模块的双流网络模型,分别通过外观和动作子网络提取属于正常行为的特有外观和动作特征,并预测视频帧图和帧差图;(3)将预测的视频帧和帧差图相加融合,得到最终的预测视频帧;(4)通过评估记忆增强模块所提取动作和外观特征以及最终预测图像质量获取该帧异常得分。本发明采用基于预测模型的深度学习方法,能够有效地将含异常行为的视频帧检测出来,提高了异常检测的准确率。 | ||
搜索关键词: | 一种 基于 外观 动作 特征 预测 异常 行为 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011263894.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种信息处理方法及装置、存储介质
- 下一篇:一种分拣小车及交叉带分拣系统