[发明专利]一种基于邻居信息和属性网络表征学习的微博用户社团发现方法有效

专利信息
申请号: 202010742856.1 申请日: 2020-07-29
公开(公告)号: CN112084418B 公开(公告)日: 2023-07-28
发明(设计)人: 徐新黎;肖云月;杨旭华;徐齐婧;周艳波 申请(专利权)人: 浙江工业大学
主分类号: G06F16/9536 分类号: G06F16/9536;G06F18/23213;G06Q50/00
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于邻居信息和属性网络表征学习的微博用户社团发现方法,利用现有的微博数据构建属性网络G=(V,E,F),根据用户关注信息的邻接矩阵A计算节点相似度SAij,根据用户属性信息矩阵F计算属性接近度矩阵SF,对网络拓扑和属性信息联合建模,采用分布式算法进行求解,最小化目标函数J,得到每个用户的嵌入向量H,对每个用户的嵌入向量H进行k‑means聚类,得到用户的类别标签,实现社团发现。本发明使用属性网络表征学习框架融合了微博用户的关注信息和属性信息,将高维用户信息转化为低维特征空间的向量,用k‑means聚类算法实现社团发现。降低了社团划分的复杂度,提高了社团发现的准确性,具有良好的性能。
搜索关键词: 一种 基于 邻居 信息 属性 网络 表征 学习 用户 社团 发现 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010742856.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top