[发明专利]一种基于自监督学习的低剂量CT图像去噪方法及系统有效

专利信息
申请号: 202010250345.8 申请日: 2020-04-01
公开(公告)号: CN111429379B 公开(公告)日: 2022-06-10
发明(设计)人: 刘治;王波民 申请(专利权)人: 山东大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 祖之强
地址: 266237 山东省青岛*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 本公开提供了一种基于自监督学习的低剂量CT图像去噪方法及系统,属于图像处理技术领域,对获取的CT图像进行预处理,将预处理后的CT图像所有像素值进行归一化;采用与CT图像大小相同的预设掩模对归一化处理后的CT图像进行部分像素的替换;将通过预设掩模替换后的CT图像输入到训练好的去噪神经网络模型中,得到对应去噪后的图像;本公开在网络模型训练去噪网络过程中,无需要成对的LDCT图像和高剂量CT图像,通过未被替代的像素推断已被替代像素的高剂量CT像素值,可以大大减少数据采集的成本,在没有高剂量CT图像的情况下完成LDCT图像的去噪任务。
搜索关键词: 一种 基于 监督 学习 剂量 ct 图像 方法 系统
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010250345.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top