[发明专利]一种基于局部近邻成分分析的图像特征提取方法有效
申请号: | 202010104785.2 | 申请日: | 2020-02-20 |
公开(公告)号: | CN111259917B | 公开(公告)日: | 2022-06-07 |
发明(设计)人: | 聂飞平;户战选;王榕;李学龙;王政;王瀚 | 申请(专利权)人: | 西北工业大学 |
主分类号: | G06V10/46 | 分类号: | G06V10/46;G06N3/04;G06N3/08 |
代理公司: | 西安凯多思知识产权代理事务所(普通合伙) 61290 | 代理人: | 王鲜凯 |
地址: | 710072 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于局部近邻成分分析的图像特征提取方法。首先,构建特征提取神经网络模型,并进行网络参数和记忆银行初始化;然后,对训练数据集进行子集划分,提取其低维特征,利用记忆银行矩阵在低维特征空间中寻找每个样本的k近邻,并对原子集合和k近邻集合按照标签进行集合划分,以得到的所有集合中样本的相似性度量函数为目标函数进行网络迭代训练;最后,利用训练好的特征提取网络对待处理图像进行特征提取。本发明方法可以使得同类样本的特征向量在低维空间中聚集,不同类样本的特征向量在低维空间中分散,从而使得原始数据在低维空间中具备明显的聚类结构,能够更加有效地用于图像聚类和图像检索。 | ||
搜索关键词: | 一种 基于 局部 近邻 成分 分析 图像 特征 提取 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010104785.2/,转载请声明来源钻瓜专利网。