[发明专利]基于递归卷积神经网络和自编码器的动态社区发现方法在审
申请号: | 202010056877.8 | 申请日: | 2020-01-17 |
公开(公告)号: | CN111275562A | 公开(公告)日: | 2020-06-12 |
发明(设计)人: | 吴伶;陈志华;张岐山 | 申请(专利权)人: | 福州大学 |
主分类号: | G06Q50/00 | 分类号: | G06Q50/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 陈明鑫;蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于递归卷积神经网络和自编码器的动态社区发现方法。该方法:首先,构建基于卷积神经网络的网络空间特征学习模型,学习网络的空间拓扑特征得到网络空间特征向量;其次,融合基于卷积神经网络的网络空间特征学习模型,以网络空间特征向量作为模型的输入,构建基于递归神经网络、卷积神经网络和自编码器的网络时空特征学习模型,学习网络的时空特征得到网络时空特征向量;最后,在网络时空特征向量基础上进行社区发现,以探测出社交网络的动态社区结构。本发明方法可应用于分析社交网络,自主学习并提取出社交网络时空特征,并且可进一步提升社区结构的模块度,从而揭示真实网络的拓扑结构等,进而有效地预测网络用户行为和信息传播等。 | ||
搜索关键词: | 基于 递归 卷积 神经网络 编码器 动态 社区 发现 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010056877.8/,转载请声明来源钻瓜专利网。