[发明专利]面向长时交通速度预测的几何代数深度神经网络模型方法有效
申请号: | 202010051123.3 | 申请日: | 2020-01-17 |
公开(公告)号: | CN111291924B | 公开(公告)日: | 2023-06-06 |
发明(设计)人: | 臧笛;方杨;程久军;卫志华;张军旗 | 申请(专利权)人: | 同济大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/30;G06N3/084;G06N3/0464 |
代理公司: | 上海科律专利代理事务所(特殊普通合伙) 31290 | 代理人: | 叶凤 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种长时交通速度预测的几何代数深度神经网络模型方法,具体方法包括如下步骤:原始数据采集及数据预处理,使用速度数据,由道路上的感应线圈检测器按时间间隔采集得到,采集得到数据后,对原始速度数据进行预处理以去除异常元素;(2)生成交通速度时空矩阵,将融合了历史速度时空矩阵用几何代数编码生成多重向量时空矩阵作为几何代数深度神经网络模型的输入;(3)构建几何代数深度神经网络模型,通过几何代数深度神经网络对历史速度参数进行多维度的深入挖掘以及时空特征的提取,实现对交通速度的长时预测;(4)通过反向传播算法对网络进行预测任务的训练优化以及测试,最后得到预测结果。提高对未来全天交通速度预测的准确性。 | ||
搜索关键词: | 面向 交通 速度 预测 几何 代数 深度 神经网络 模型 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010051123.3/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理