[发明专利]一种基于循环神经网络和卷积神经网络的智能水位预测方法在审
申请号: | 201911269292.8 | 申请日: | 2019-12-11 |
公开(公告)号: | CN111242344A | 公开(公告)日: | 2020-06-05 |
发明(设计)人: | 潘明阳;周海南;顾网林;李昱;曹佳一;王德强 | 申请(专利权)人: | 大连海事大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/04;G06N3/08 |
代理公司: | 大连东方专利代理有限责任公司 21212 | 代理人: | 姜玉蓉;李洪福 |
地址: | 116026 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于循环神经网络和卷积神经网络的智能水位预测方法,包括:处理空间上相邻的各个水位站长期采集的水位数据,形成水位样本数据;构建基于循环神经网络和卷积神经网络的水位预测模型;利用水位样本数据对水位预测模型进行训练和测试,确定水位预测模型的网络参数;利用训练好的水位预测模型,输入多个空间相邻水位站的一段期间的历史数据,获得中间水位站未来一段期间的预测水位值。本发明的技术方案一方面利用循环神经网络学习水位的变化趋势,另一方面利用卷积神经网络更好地学习到了不同位置的水位站之间水位值的某种关联,从而更加充分利用多水位站的数据,提高内河水位预测的精度。 | ||
搜索关键词: | 一种 基于 循环 神经网络 卷积 智能 水位 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连海事大学,未经大连海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911269292.8/,转载请声明来源钻瓜专利网。
- 上一篇:一种铆接装置
- 下一篇:一种文件处理方法及装置
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理