[发明专利]一种基于多元变量间的关系变化的时序分类的方法有效

专利信息
申请号: 201910833290.0 申请日: 2019-09-04
公开(公告)号: CN110751169B 公开(公告)日: 2023-09-29
发明(设计)人: 蔡瑞初;陈嘉伟;温雯;郝志峰;陈炳丰;李梓健 申请(专利权)人: 广东工业大学
主分类号: G06F18/24 分类号: G06F18/24;G06N3/0442;G06N3/0464;G06N3/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 511404 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供的一种基于多元变量间的关系变化的时序分类的方法,包括:从观察数据集中获取样本数据,计算样本数据两两变量间的偏相关系数,构造偏相关系数矩阵;通过卷积神经网络对偏相关系数矩阵进行编码后得到对应的特征图;将每个特征图分别拉伸成特征向量循环输入长短记忆神经网络,从而得到用于捕获变量关系间变化模式的隐藏状态;将隐藏状态输入标签分类器,输出对应的样本类别,完成时序的分类。本发明提供的一种基于多元变量间的关系变化的时序分类的方法,充分地考虑了时序数据中不同变量之间的关系,同时基于变量的关系模式进行分类,充分地表达了时序数据中不同变量关系的变化模式,同时对输入的噪声值具有更好的鲁棒性,分类精度高。
搜索关键词: 一种 基于 多元 变量 关系 变化 时序 分类 方法
【主权项】:
1.一种基于多元变量间的关系变化的时序分类的方法,其特征在于,包括以下步骤:/nS1:获取带标签的观察数据集;/nS2:从观察数据集中获取样本数据,计算样本数据两两变量间的偏相关系数,构造偏相关系数矩阵,得到每个时刻的偏相关系数矩阵;/nS3:将每个时刻的偏相关系数矩阵作为输入卷积神经网络,由卷积神经网络对偏相关系数矩阵进行编码后得到对应的特征图;/nS4:将每个特征图分别拉伸成特征向量循环输入长短记忆神经网络,从而得到用于捕获变量关系间变化模式的隐藏状态;/nS5:将隐藏状态输入标签分类器,输出对应的样本类别,完成时序的分类。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910833290.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top