[发明专利]一种深度学习下的配电网可靠性指标优化方法在审
申请号: | 201910599100.3 | 申请日: | 2019-07-04 |
公开(公告)号: | CN110414718A | 公开(公告)日: | 2019-11-05 |
发明(设计)人: | 孙园园;单鸿涛;章文俊;戴少康;任丽佳;闫普虹 | 申请(专利权)人: | 上海工程技术大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/08 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 叶敏华 |
地址: | 201620 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种深度学习下的配电网可靠性指标优化方法,包括步骤:1)采集样本数据,构建训练样本和测试样本;2)确定深度信念网络结构;3)将训练样本输入深度信念网络,对深度信念网络模型进行优化;4)将测试样本输入至优化后的深度信念网络模型,获取对应的配电网可靠性指标;5)确定临界值,将获取的配电网可靠性指标与已有精确结果进行比较,若相对误差大于或等于临界值,则调整网络层数和节点个数后,重复步骤3)~4),若相对误差小于临界值,则完成深度学习下的配电网可靠性获取的优化。与现有技术相比,本发明具有能完整、科学、可靠的获取优化的深度学习下的配电网可靠性指标,且保证指标精确度、缩短计算时间等优点。 | ||
搜索关键词: | 配电网 可靠性指标 信念网络 优化 测试样本 相对误差 训练样本 学习 网络结构 样本数据 网络层 构建 采集 重复 保证 | ||
【主权项】:
1.一种深度学习下的配电网可靠性指标优化方法,其特征在于,该方法包括下列步骤:1)采集样本数据,构建训练样本和测试样本;2)确定深度信念网络结构,包括设置网络层数、节点个数和初始状态参数;3)将训练样本输入深度信念网络,对深度信念网络模型进行优化;4)将测试样本输入至优化后的深度信念网络模型,获取对应的配电网可靠性指标;5)确定临界值,将步骤4)获取的配电网可靠性指标与已有精确结果进行比较,若相对误差大于或等于临界值,则调整网络层数和节点个数后,重复步骤3)~4),若相对误差小于临界值,则完成深度学习下的配电网可靠性获取的优化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海工程技术大学,未经上海工程技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910599100.3/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理