[发明专利]一种基于隐马尔可夫模型的大脑时间信号处理方法有效
申请号: | 201910539169.7 | 申请日: | 2019-06-20 |
公开(公告)号: | CN110363096B | 公开(公告)日: | 2022-02-22 |
发明(设计)人: | 刘天;范庚;杨明;陈宇豪 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06T7/30 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 王艾华 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于隐马尔可夫模型的大脑时间信号处理方法,包括步骤:1)将采集所得功能磁共振图像进行预处理,并且要求所采集的功能磁共振图像有相同的回波时间;2)对预处理后每个被试脑区的时间序列进行中心化和标准化,使用健康被试分别训练每个脑区的隐马尔可夫模型;3)根据所求的隐马尔可夫模型参数求解每个被试每个脑区序列的似然值,并根据不同被试时间序列长度不同进行缩放,得到每个被试每个脑区的一个特征;4)使用步骤3)得到每个被试一个脑区的特征后,使用SVM‑RFE方法分类两组被试。基于本发明所提出的分析方法对孤独症谱系障碍的功能磁共振数据进行分类,准确率已经达到80.37%,相较于构建脑网络,深度学习等其他方法有很大的提升。 | ||
搜索关键词: | 一种 基于 隐马尔可夫 模型 大脑 时间 信号 处理 方法 | ||
【主权项】:
1.一种基于隐马尔可夫模型的大脑时间信号处理方法,其特征在于,包括以下步骤:1)将采集所得功能磁共振图像进行预处理,并且要求所采集的功能磁共振图像有相同的回波时间;2)对预处理后每个被试脑区的时间序列进行中心化和标准化,使用健康被试分别训练每个脑区的隐马尔可夫模型;3)根据所求的隐马尔可夫模型参数求解每个被试每个脑区序列的似然值,并根据不同被试时间序列长度不同进行缩放,得到每个被试每个脑区的一个特征;4)使用步骤3)得到每个被试一个脑区的特征后,使用SVM‑RFE方法分类两组被试。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910539169.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种针对表格字体的识别方法
- 下一篇:基于财务报表的企业画像生成方法和装置