[发明专利]基于长短期记忆模型LSTM的排水管网窨井液位预测方法有效

专利信息
申请号: 201910243871.9 申请日: 2019-03-28
公开(公告)号: CN109948863B 公开(公告)日: 2021-08-03
发明(设计)人: 徐哲;沈佳辉;陈晖;何必仕 申请(专利权)人: 杭州电子科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06N3/04;G06N3/08
代理公司: 浙江千克知识产权代理有限公司 33246 代理人: 周希良
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于长短期记忆模型LSTM的排水管网窨井液位预测方法。它首先建立排水管网窨井液位数据库,数据项包括:时刻,窨井液位数据,各个上游泵站开泵信号。其次建立并训练LSTM预测模型,包括确定时滞、确定LSTM预测模型的输入输出、样本采集及划分、数据归一化处理、确定LSTM网络模型结构和模型校核。最后进行LSTM预测模型应用及更新。本发明考虑了上游泵站的启停和污水在管道之间流动的时滞因素,运用了长短期记忆模型LSTM的记忆能力解决了上游泵站启停与下游的时滞不确定性,能够比传统方法更准确有效地预测窨井液位。
搜索关键词: 基于 短期 记忆 模型 lstm 排水 管网 窨井 预测 方法
【主权项】:
1.基于长短期记忆模型LSTM的窨井液位预测方法,其特征在于该方法包括以下步骤:步骤1、建立排水管网窨井液位数据库,数据库中的数据项包括:时刻、窨井液位数据和各个上游泵站开泵信号;步骤2、建立并训练LSTM预测模型1)确定时滞上游泵站的启停,增减输排污水量的变化会反应在下游窨井液位中,而这个变化往往有一定的时间差,这个时间差就是污水流动的时滞时间;不断调整上游泵站信号序列与下游窨井液位序列相对位置,分别计算皮尔逊相关性系数R,当R绝对值达到最大,即为该上游泵站到该窨井液位的时滞时间t;计算每个上游泵站到该窨井液位的皮尔逊相关性系数,得到p个上游泵站到该窨井液位的时滞时间t1 t2…tp;2)确定LSTM预测模型的输入输出;从时滞时间t1 t2…tp中取最大时滞值tmax;输入时间跨度In*T略微大于tmax以保障所有泵站变化信息全部获取;输出跨度Out*T取决于预测期;这里In、Out为整数,T为步长;由此确定:模型输入为前In个的窨井液位、p个上游泵站开泵信号,输入量为(p+1)*In个;输出为第Out*T时刻的窨井液位值,输出量仅1个;3)样本采集及划分样本数不少于2000个,训练测试样本,尽量在一个连续时间内;4)数据归一化处理5)确定LSTM网络模型结构LSTM模型的训练过程中,损失函数设置为平均绝对误差,优化函数设置为admin函数;LSTM隐含层神经元个数K,如下:K=4*(m*n+n)其中m,n分别为输入和输出维数,这里m=(p+1)*In,n=1;步骤3、LSTM预测模型应用及更新利用步骤2得到的LSTM预测模型,输入前In个上游泵站信号与液位,预测得到Out*T后的液位值,模型输出的液位预测值填入数据库相应记录中;每天计算当日得到的预测值与实际值的平均绝对误差,当平均绝对误差大于模型允许误差ε时,重新进行步骤2并尽量利用新近的样本训练、检核模型,保证窨井液位的预测精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910243871.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top