[发明专利]基于自学习的人脸考勤方法、装置、设备及存储介质在审
申请号: | 201910239165.7 | 申请日: | 2019-03-27 |
公开(公告)号: | CN110110593A | 公开(公告)日: | 2019-08-09 |
发明(设计)人: | 朱常玉;温云龙;周冠宇;李进 | 申请(专利权)人: | 广州杰赛科技股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G07C1/10 |
代理公司: | 广州三环专利商标代理有限公司 44202 | 代理人: | 黄诗彬;郝传鑫 |
地址: | 510310 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于自学习的人脸考勤方法、装置、设备及计算机可读存储介质,该方法通过对连续帧数图像数据进行人脸图像质量分析,获取多帧待识别人脸图像,对待识别人脸图像进行特征点定位,并通过预设的卷积神经网络模型,提取出每帧待识别人脸图像中的人脸特征向量并保存至人脸特征列表;对人脸特征列表进行聚类,得到人脸特征矩阵;采用预先构建的KNN模型对人脸特征矩阵中的每一行的人脸特征向量进行匹配分析,获得每一行中各个人脸特征向量的匹配结果并保存至识别相似度矩阵中;根据识别相似度矩阵,获取人脸考勤结果,采用图像质量分析方法结合人脸特征聚类方法对多人多帧的图像进行人脸识别,能够有效提高人脸考勤过程中人脸识别的精度。 | ||
搜索关键词: | 人脸特征 人脸 人脸特征向量 考勤 待识别人脸图像 矩阵 相似度矩阵 人脸识别 人脸图像 自学习 聚类 计算机可读存储介质 卷积神经网络 图像质量分析 特征点定位 存储介质 考勤结果 匹配分析 匹配结果 图像数据 质量分析 连续帧 保存 多帧 构建 预设 图像 | ||
【主权项】:
1.一种基于自学习的人脸考勤方法,其特征在于,包括:对接收到的连续帧数图像数据进行人脸图像质量分析,获取多帧待识别人脸图像;对多帧所述待识别人脸图像进行特征点定位,并通过预设的卷积神经网络模型,提取出每帧待识别人脸图像中的人脸特征向量;将多帧所述待识别人脸图像对应的人脸特征向量保存至预设的人脸特征列表;对所述人脸特征列表进行聚类,得到人脸特征矩阵;其中,所述人脸特征矩阵中每一行为同一人的不同帧数的待识别人脸图像对应的人脸特征向量;采用预先构建的KNN模型对所述人脸特征矩阵中的每一行的人脸特征向量进行匹配分析,获得每一行中各个人脸特征向量的匹配结果,并将所述匹配结果保存至预先构建的识别相似度矩阵中;根据所述识别相似度矩阵,获取人脸考勤结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州杰赛科技股份有限公司,未经广州杰赛科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910239165.7/,转载请声明来源钻瓜专利网。