[发明专利]基于噪声学习神经网络模型的图像混合噪声消除方法有效

专利信息
申请号: 201811649125.1 申请日: 2018-12-30
公开(公告)号: CN109685743B 公开(公告)日: 2023-01-17
发明(设计)人: 郭敏;吕琼帅;彭亚丽;裴炤;肖冰 申请(专利权)人: 陕西师范大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 西安永生专利代理有限责任公司 61201 代理人: 郝燕燕
地址: 710062 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于噪声学习神经网络模型的图像混合噪声消除方法,由构建训练模型数据集、噪声学习神经网络模型构建、噪声学习神经网络模型训练及初始参数的确定、对混合噪声图像进行去噪四部分组成。本发明通过构建训练模型数据集对噪声学习神经网络模型进行训练,通过第一噪声特征抽取单元提取混合噪声的特征,利用中间层的噪声特征强化模块和第一正则化单元增强混合噪声的特征,在第二噪声特征抽取单元产生预测的噪声残差图像;将带有混合噪声的测试图像输入到噪声学习神经网络模型中,输出残差图像,用带有混合噪声的图像减去残差图像可得到清晰的图像。本发明具有自适应能力高,泛化能力强,测试时间短等优点,可用于图像的混合噪声消除。
搜索关键词: 基于 噪声 学习 神经网络 模型 图像 混合 消除 方法
【主权项】:
1.一种基于噪声学习神经网络模型的图像混合噪声消除方法,其特征在于由下述步骤组成:(1)构建模型训练数据集灰度图像数据集为X,根据图像分辨率的大小,将图像数据集X中每张图像分割成像素为p×p的图像块,将图像块进行数据增强后构成图像块数据集PX1,对数据集PX1中的图像块加入混合噪声,得到混合噪声图像块集合NPX2,用混合噪声图像块集合NPX2中的图像块减去图像块集合PX1中的对应的图像块,得到只含有混合噪声的残差图像块,所有的残差图像块构成残差图像块数据集NPY,则(NPX2,NPY)组成用于监督训练的数据集;(2)噪声学习神经网络模型构建噪声学习神经网络模型的第一层为第一噪声特征抽取单元,中间层由N∈[5,16]个集成层串联组成,集成层由噪声特征强化模块和第一正则化单元构成,最后一层为第二噪声特征抽取单元,所述的第一噪声特征抽取单元将混合噪声图像块集合NPX2作为输入,所述的噪声特征强化模块用于强化和传递提取的噪声特征,所述的第一正则化单元用于加速和稳定训练过程,所述的第二噪声特征抽取单元用于产生预测的残差图像块;所述的噪声特征强化模块由第一空洞卷积单元、第二正则化单元、带泄露线性整流单元、第二空洞卷积单元、第三正则化单元、指数映射单元、特征融合单元构成,第一空洞卷积单元的输出分两支,一支输出到第二正则化单元,另一支输出到特征融合单元,第二正则化单元输出到带泄露线性整流单元,带泄露线性整流单元输出到第二空洞卷积单元,第二空洞卷积单元输出到第三正则化单元,第三正则化单元输出到指数映射单元,指数映射单元输出到特征融合单元;(3)噪声学习神经网络模型训练及初始参数的确定(3.1)网络模型参数初始化:网络参数的初始值按照如下公式进行:A=randn(n,n,in,out)                  (1)[θi,~,~]=SVD(A×α×chi)            (2)公式(1)中n表示卷积核的大小,in表示输入的特征图数量,out表示输出的特征图数量,randn表示生成n×n×in×out四维的具有高斯分布的矩阵,公式(2)中θi是当前卷积层的参数矩阵,符号~表示忽略该处的矩阵值,SVD表示执行奇异值分解操作,A是参数矩阵,α是参数变化率,chi表示当前卷积层的通道数;(3.2)使用训练数据集(NPX2,NPY)对噪声学习神经网络模型进行训练,利用随机梯度下降算法来最小化损失函数L(θ),通过对损失函数L(θ)不断地迭代优化,直到迭代次数达到迭代次数上限,即完成噪声学习神经网络模型的训练和参数的优化,其中,噪声学习神经网络模型的损失函数L(θ)如下所示:公式(3)中K表示训练数据集(NPX2,NPY)中样本的个数,表示执行l2范数操作,R(yi;θ)表示在噪声学习神经网络模型的参数为θ的条件下,预测出的第i张残差图像yi,NPYi表示第i张预测的残差图像对应的真实的残差图像,γ∈(0,1)是正则化系数,d(R(yi;θ),NPYi)表示距离函数;所述距离函数d(R(yi;θ),NPYi)为:d(R(yi;θ),NPYi)=(R(yi;θ)‑NPYi)T×[βI‑MTM]×(R(yi;θ)‑NPYi)    (4)公式(4)中I是单位矩阵,M是二进制对角矩阵,β是距离调整参数,β取值为δ×c,δ是控制因子,c为M的最大特征值,满足βI>||M||2=1;(4)对混合噪声图像进行去噪利用训练好的噪声学习神经网络模型对带有混合噪声的图像进行处理,输出残差图像,用带有混合噪声的图像减去残差图像可得到清晰图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西师范大学,未经陕西师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811649125.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top