[发明专利]一种基于Attention-LSTM网络的视频行为识别方法有效

专利信息
申请号: 201811397129.5 申请日: 2018-11-22
公开(公告)号: CN109740419B 公开(公告)日: 2021-03-02
发明(设计)人: 陆生礼;庞伟;向丽苹;范雪梅;舒程昊;吴成路;阮小千;梁彪;邹涛 申请(专利权)人: 东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 施昊
地址: 214135 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于Attention‑LSTM网络的视频行为识别方法。通过光流图序列生成模块对输入的RGB图序列进行变换,得到光流图序列;将光流图序列与原RGB图序列输入时域注意力取帧模块,分别选取两种图序列中非冗余的关键帧;将两种图的关键帧序列输入AlexNet网络特征提取模块,分别提取出两种帧图的时序特征和空间特征,通过特征分权加强模块,对最后一层卷积层输出的特征图执行加重与动作相关性强的特征权重的操作;将两个AlexNet网络特征提取模块输出的特征图输入LSTM网络行为识别模块,分别对两种图片进行识别,并将两种识别结果通过融合模块按比例融合,得到最终的视频行为识别结果。本发明不仅能实现从视频中识别行为的功能,且能提高识别的准确率。
搜索关键词: 一种 基于 attention lstm 网络 视频 行为 识别 方法
【主权项】:
1.一种基于Attention‑LSTM网络的视频行为识别方法,其特征在于,首先,通过光流图序列生成模块对输入的RGB图序列进行变换,得到光流图序列;其次,将得到的光流图序列与原RGB图序列输入时域注意力取帧模块,分别选取两种图序列中非冗余的关键帧;然后,将两种图的关键帧序列输入AlexNet网络特征提取模块,分别提取出两种帧图的时序特征和空间特征,同时,在AlexNet网络的最后一层卷积层与全连接层之间通过特征分权加强模块,对最后一层卷积层输出的特征图执行加重与动作相关性强的特征权重的操作;将两个AlexNet网络特征提取模块输出的特征图输入LSTM网络行为识别模块,分别对两种图片进行识别,并将两种识别结果通过融合模块按比例融合,得到最终的视频行为识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司,未经东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811397129.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top