[发明专利]基于交互序列数据挖掘深度用户相似性的推荐方法有效
申请号: | 201811224350.0 | 申请日: | 2018-10-19 |
公开(公告)号: | CN109522474B | 公开(公告)日: | 2021-05-18 |
发明(设计)人: | 徐亚南;朱燕民;沈艳艳;俞嘉地 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06F16/9535 | 分类号: | G06F16/9535;G06F16/2458;G06Q30/06 |
代理公司: | 上海思微知识产权代理事务所(普通合伙) 31237 | 代理人: | 屈蘅 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于交互序列数据挖掘深度用户相似性的推荐方法,所述推荐方法包括对用户与物品交互的原始记录数据进行预处理,以获得用户与物品的交互序列数据,并根据所述交互序列数据生成用户‑物品交互矩阵和用户‑gram矩阵;根据所述用户‑物品交互矩阵和所述用户‑gram矩阵构建推荐模型,并训练所述推荐模型;基于经过训练的推荐模型,计算出每个用户对所有物品的偏好,并根据偏好值由高到低对所有物品进行排序;去除用户已交互过的物品,将剩余物品中预定个偏好值最高的物品作为个性化推荐的结果推荐给对应用户。本发明将用户对物品的偏好情况和用户间的相似性应用于推荐方法中,解决了数据稀疏性的问题,提高了推荐准确率。 | ||
搜索关键词: | 基于 交互 序列 数据 挖掘 深度 用户 相似性 推荐 方法 | ||
【主权项】:
1.一种基于交互序列数据挖掘深度用户相似性的推荐方法,其特征在于,包括:对用户与物品交互的原始记录数据进行预处理,以获得用户与物品的交互序列数据,并根据所述交互序列数据生成用户‑物品交互矩阵和用户‑gram矩阵;根据所述用户‑物品交互矩阵和所述用户‑gram矩阵构建推荐模型,并训练所述推荐模型;基于经过训练的推荐模型,计算出每个用户对所有物品的偏好,并根据偏好值由高到低对所有物品进行排序;去除用户已交互过的物品,将剩余物品中预定个偏好值最高的物品作为个性化推荐的结果推荐给对应用户。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811224350.0/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置