[发明专利]基于卷积神经网络的视频帧率上变换方法及系统有效
申请号: | 201811059317.7 | 申请日: | 2018-09-12 |
公开(公告)号: | CN109379550B | 公开(公告)日: | 2020-04-17 |
发明(设计)人: | 宋利;张智峰;解蓉;陈立 | 申请(专利权)人: | 上海交通大学 |
主分类号: | H04N7/01 | 分类号: | H04N7/01;G06N3/04 |
代理公司: | 上海恒慧知识产权代理事务所(特殊普通合伙) 31317 | 代理人: | 徐红银 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于卷积神经网络的视频帧率上变换方法及系统,该方法包括:接收发送端传输的初始视频;将所述初始视频划分为包含连续两帧图像的多组图像块;将所述图像块中的连续两帧图像作为目标卷积神经网络的输入,合成所述连续两帧图像对应的中间帧图像;其中,所述目标卷积神经网络是通过预设的训练数据集训练得到的,所述目标卷积神经网络包括:编码器、解码器以及光流预测层;将所述中间帧图像插入所述图像块内,得到视频帧率上变换后的目标视频。从而可以完成从前后两帧到中间帧的映射,提高原有视频的帧率,更好地完成了视频帧率的上变换。 | ||
搜索关键词: | 基于 卷积 神经网络 视频 帧率上 变换 方法 系统 | ||
【主权项】:
1.一种基于卷积神经网络的视频帧率上变换方法,其特征在于,包括:接收发送端传输的初始视频;将所述初始视频划分为包含连续两帧图像的多组图像块;将所述图像块中的连续两帧图像作为目标卷积神经网络的输入,合成所述连续两帧图像对应的中间帧图像;其中,所述目标卷积神经网络是通过预设的训练数据集训练得到的,所述目标卷积神经网络包括:编码器、解码器以及光流预测层;将所述中间帧图像插入所述图像块内,得到视频帧率上变换后的目标视频。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811059317.7/,转载请声明来源钻瓜专利网。