[发明专利]一种基于多尺度语义特征的慢性静脉疾病图像分类方法有效
申请号: | 201810863104.3 | 申请日: | 2018-08-01 |
公开(公告)号: | CN109034253B | 公开(公告)日: | 2021-06-29 |
发明(设计)人: | 石强;薛志东;陈维亚;黄秋晗;邹苇;唐静;周成;彭柯 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/34;G06K9/46 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多尺度语义特征的慢性静脉疾病图像分类方法,包括:对待测慢性静脉疾病图像进行多尺度划分,在每个尺度上,利用每个尺度对应的概念分类器对图像块进行分类,得到待测慢性静脉疾病图像中的每个图像块的概念类别;将每个尺度上每个概念类别出现的频率作为全局表示特征,将每个尺度上的全局表示特征串联得到待测慢性静脉疾病图像的多尺度语义表示;基于高阶相关性的特征选择法从多尺度语义表示中获取对分类结果区分性能最优的特征子集,将特征子集输入场景分类器,得到待测慢性静脉疾病图像的分类结果。本发明的分类结果准确率高、可靠性强。 | ||
搜索关键词: | 一种 基于 尺度 语义 特征 慢性 静脉 疾病 图像 分类 方法 | ||
【主权项】:
1.一种基于多尺度语义特征的慢性静脉疾病图像分类方法,其特征在于,包括:(1)对待测慢性静脉疾病图像进行多尺度划分,在每个尺度上,利用每个尺度对应的概念分类器对待测慢性静脉疾病图像中的图像块进行分类,得到待测慢性静脉疾病图像中的每个图像块的概念类别;(2)将每个尺度上每个概念类别出现的频率作为待测慢性静脉疾病图像的全局表示特征,将待测慢性静脉疾病图像在每个尺度上的全局表示特征串联,得到待测慢性静脉疾病图像的多尺度语义表示;(3)基于高阶相关性的特征选择法从待测慢性静脉疾病图像的多尺度语义表示中获取对分类结果区分性能最优的特征子集,将特征子集输入场景分类器,得到待测慢性静脉疾病图像的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810863104.3/,转载请声明来源钻瓜专利网。