[发明专利]基于CEEMDAN和CFSFDP的滚动轴承故障诊断方法及设备在审
申请号: | 201810738093.6 | 申请日: | 2018-07-06 |
公开(公告)号: | CN109100143A | 公开(公告)日: | 2018-12-28 |
发明(设计)人: | 吴军;林漫曦;程一伟;郭鹏飞;徐雪兵;鲁施雨 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G01M13/04 | 分类号: | G01M13/04 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 尚威;李智 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于CEEMDAN和CFSFDP的滚动轴承故障诊断方法及设备,属于旋转机械故障诊断领域。该方法通过获取正常状态和不同故障模式状态下轴承的振动信号得到不同状态的振动信号的样本点,利用CEEMDAN分解得到轴承诊断的时频域特征并与时域、频域特征一起筛选出轴承状态表征参数,将表征参数分为训练样本和测试样本,然后利用表CFSFDP算法作为轴承故障诊断模型,将训练样本输入轴承故障诊断模型中,对输出结果进行聚类,得到聚类的数量、各类别的聚类中心点以及聚类中心点对应的状态类型;并利用测试样本对训练后的诊断模型进行检验。本发明的方法及设备能够准确有效的识别不同的轴承故障类型及故障严重程度。 | ||
搜索关键词: | 滚动轴承故障诊断 表征参数 测试样本 聚类中心 训练样本 振动信号 轴承故障 诊断 聚类 故障模式状态 故障诊断模型 旋转机械故障 时频域特征 频域特征 输出结果 输入轴承 轴承诊断 轴承状态 状态类型 下轴承 样本点 时域 算法 筛选 分解 检验 | ||
【主权项】:
1.一种基于CEEMDAN和CFSFDP的滚动轴承故障诊断方法,其特征在于,包括如下步骤:步骤1:获取正常状态和不同故障模式状态下轴承的振动信号,并对获取的振动信号进行预处理,得到包含不同状态的振动信号的样本点;步骤2:提取各样本点包含的振动信号的时域特征;对各样本点包含的振动信号进行傅里叶变换,提取各振动信号的频谱特征;对各样本点包含的振动信号进行CEEMDAN分解,得到各个模态分量;计算每个模态分量的能量值作为轴承诊断的时频域特征;步骤3:对步骤2获得的时域特征、频域特征和时频域特征进行筛选,将正常状态以及各故障模式状态之间区别明显的特征作为区分各样本点的状态的表征参数;步骤4:初始化CFSFDP算法作为轴承故障诊断模型,将步骤3筛选出的表征参数分为训练样本和测试样本,将训练样本输入轴承故障诊断模型中,对输出结果进行聚类,得到聚类的数量、各类别的聚类中心点以及聚类中心点对应的状态类型;步骤5:计算测试样本中每个样本点到各聚类中心点的欧式距离,各样本点与其欧式距离最近的聚类中心点所属状态相同;遍历测试样本中的所有样本点,得到各样本点所属状态,即待测轴承的故障诊断结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810738093.6/,转载请声明来源钻瓜专利网。