[发明专利]一种基于LSTM的无人机飞行数据异常检测方法有效

专利信息
申请号: 201810639367.6 申请日: 2018-06-20
公开(公告)号: CN108960303B 公开(公告)日: 2021-05-07
发明(设计)人: 刘大同;彭宇;王泽洋;王本宽;彭喜元 申请(专利权)人: 哈尔滨工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06Q10/00
代理公司: 哈尔滨市松花江专利商标事务所 23109 代理人: 岳昕
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于LSTM的无人机飞行数据异常检测方法,涉及无人机异常检测和系统健康管理领域。本发明是为了解决在无人机飞行数据异常检测中,无人机系统工作过程中产生的函数较为复杂,其逼近能力并不能满足较高拟合精度需求的问题。本发明重构无人机遥测数据相空间,获得输入向量和输出向量,获得训练样本集和测试样本集,采用TensorFlow深度学习开源框架搭建LSTM基本预测模型并进行参数进行寻优,获得最优LSTM模型进而计算LSTM预测结果;之后分别进行异常点检测和异常序列检测,最终完成无人机飞行数据异常检测。
搜索关键词: 一种 基于 lstm 无人机 飞行 数据 异常 检测 方法
【主权项】:
1.一种基于LSTM的无人机飞行数据异常检测方法,其特征在于,包括异常点检测方法和异常序列检测方法:异常点检测方法具体为:步骤一:重构无人机遥测数据相空间,获得输入向量和输出向量,构建LSTM基本预测模型的训练样本集和测试样本集,并基于训练样本集和测试样本集搭建LSTM基本预测模型;步骤二:利用网格搜索法对LSTM基本预测模型的参数进行寻优,并将寻优后的参数代入LSTM基本预测模型中获得最优LSTM模型;步骤三:将测试样本集中的样本输入到最优LSTM模型中,获得LSTM预测结果;步骤四:计算训练样本集中样本的实际值与LSTM预测结果的残差,将训练样本集中样本的残差平均值作为正态分布中心μ=mean(etraining),将训练样本集中样本残差的标准差作为正态分布方差σ=std(etraining),etraining表示训练样本集中样本的残差,当置信概率P=99%时,获得置信区间:[μ‑2.6·σ,μ+2.6·σ];步骤五:判断待检测无人机飞行数据是否属于置信区间,是则该待检测无人机飞行数据为正常点,否则该待检测无人机飞行数据为异常点;异常序列检测方法具体为:步骤六:将所有待检测无人机飞行数据按照时间顺序划分为多个时间序列,每个时间序列含有n个数据,6≤n≤15;步骤七:当置信概率大于99%时,判断每个时间序列中异常点的个数Q是否属于[n‑4,n],是则该时间序列为异常时间序列,否则该时间序列为正常时间序列。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810639367.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top