[发明专利]一种优化Spark SQL执行工作流的方法有效
申请号: | 201810536078.3 | 申请日: | 2018-05-28 |
公开(公告)号: | CN108763489B | 公开(公告)日: | 2022-02-15 |
发明(设计)人: | 宋爱波;万雨桐 | 申请(专利权)人: | 东南大学 |
主分类号: | G06F16/2453 | 分类号: | G06F16/2453;G06F16/2458 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 许小莉 |
地址: | 210096 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种优化Spark SQL执行工作流的方法。该方法包括步骤S1:构建Spark任务执行的代价模型,分为读取输入数据的代价,对中间数据进行排序的代价和写输出数据的代价,将三者进行求和得到任务执行的总代价;步骤S2:提出基于代价的相关性合并算法,该算法的思想是对于两个具有输入数据相关性的任务,计算它们分别执行的代价之和与合并成一个任务之后执行的代价,通过比较两者的大小来决定是否将它们进行合并。本发明通过基于代价的相关性合并算法解决Spark SQL查询中对相同的输入数据进行重复读取的问题。 | ||
搜索关键词: | 一种 优化 spark sql 执行 工作流 方法 | ||
【主权项】:
1.一种优化Spark SQL执行工作流的方法,其特征在于,该方法包括如下步骤:步骤S1:构建Spark任务执行的代价模型,分为读取输入数据的代价,对中间数据进行排序的代价和写输出数据的代价,将三者进行求和得到任务执行的总代价;步骤S2:提出基于代价的相关性合并算法,该算法的思想是对于两个具有输入数据相关性的任务,计算它们分别执行的代价之和与合并成一个任务之后执行的代价,通过比较两者的大小来决定是否将它们进行合并。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810536078.3/,转载请声明来源钻瓜专利网。