[发明专利]基于通道信号融合神经网络的自动心律失常分析方法有效

专利信息
申请号: 201810451715.7 申请日: 2018-05-12
公开(公告)号: CN108766557B 公开(公告)日: 2021-07-20
发明(设计)人: 刘通;危义民;臧睦君;邹海林;贾世祥;柳婵娟;周树森 申请(专利权)人: 鲁东大学
主分类号: G16H50/20 分类号: G16H50/20;G06N3/04
代理公司: 长春市东师专利事务所 22202 代理人: 张铁生;刘延军
地址: 264025 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于通道信号融合深度神经网络的自动心律失常分析方法,它包括:两种采样方式生成多通道心电图样本;所得600维心电信号沿第二个维度拼接,原始心电信号为两导联时,等效为形成4*600*1维的心电信号样本,将四个通道的输入信号输入到合并层中沿最后一维合并,合并层输出为600*4维的信号。合并层后串联两层卷积层单元,卷积层单元和LSTM层单元间有attention层;卷积层单元包括使用一维卷积提取一维心电信号特征的卷积层以及依次串联的一激励单元操作和一池化层操作;LSTM层单元串联一个激励单元为softmax的全连接层;输出;学习深度神经网络的参数,对样本进行自动识别;解决了现有心律失常分析系统尚不足以满足临床应用的准确率需求的问题。
搜索关键词: 基于 通道 信号 融合 神经网络 自动 心律失常 分析 方法
【主权项】:
1.一种基于通道信号融合神经网络的自动心律失常分析方法,它包括:1)采用两种采样方式进行复合采样,生成多通道心电图样本;a.对每个导联的心电信号,前后各取100个点再重采样到固定维度600;b.对每个导联的心电信号,前取2个周期的R‑R波区间,后取1个周期的R‑R波区间,再重采样到固定维度600;将上述两种采样方式所得的600维心电信号沿第二个维度拼接,每导联心电信号由600*1维扩增为2*600*1维,此时的2为该导联心电信号的通道数;将原始每个导联的心电数据经过所述复合采样方式形成上述4*600*1维的心电信号样本X,作为深度神经网络模型的输入Input,即为图一中的Input1, Input2, Input3, Input4;2)搭建深度神经网络深度神经网络包括多个依次串联的卷积层单元和LSTM层单元,且在卷积层单元和LSTM层单元间有attention层作为连接单元;每个所述卷积层单元包括一个卷积层以及该卷积层输出端依次串联的一激励单元操作和一池化层操作;所述卷积层单元使用的是一维卷积,用于提取一维心电信号的特征;LSTM层单元的输出串联一个激励单元为softmax的全连接层;输出;3)学习深度神经网络的参数;4)对样本进行自动识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于鲁东大学,未经鲁东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810451715.7/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top