[发明专利]一种基于SSD网络的裂纹舌识别方法有效
申请号: | 201810371990.8 | 申请日: | 2018-04-24 |
公开(公告)号: | CN108734108B | 公开(公告)日: | 2021-08-03 |
发明(设计)人: | 王丽冉;汤一平;陈朋;何霞;袁公萍 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于SSD网络的裂纹舌识别方法,包括对采集到的舌象进行舌体分割的预处理操作、在训练过程中的数据增强操作、用于舌整体特征提取的深度卷积神经网络、用于对裂纹区域进行预测的候选框生成方法,完成对舌象中裂纹区域的确定,并通过置信度过滤判别其是否为裂纹舌。本发明无需手工定义特征,有效地提高了裂纹舌的识别正确率。 | ||
搜索关键词: | 一种 基于 ssd 网络 裂纹 识别 方法 | ||
【主权项】:
1.一种基于SSD网络的裂纹舌识别方法,其特征在于,所述方法包括对采集到的舌象进行舌体分割的预处理操作、基于深度卷积神经网络的舌象整体特征提取和对裂纹区域进行预测的候选框生成方法,完成对舌象中裂纹区域的确定,并通过置信度过滤来判别其是否为裂纹舌;所述的对采集到的舌象进行舌体分割的预处理操作,通过构建全卷积网络实现,所述全卷积网络由卷积层、池化层和反卷积层组成,卷积池化层将原始舌象从像素域映射到特征域,进行隐式的特征提取,反卷积层将上一步得到的特征图恢复到原图尺寸,进而对图像中的每个点进行分类实现分割;所述的基于深度卷积神经网络的舌象整体特征提取,所述深度卷积神经网络由卷积层组成,将上述分割后的舌体作为输入,输入图像在网络中进行层层映射,得到不同的表示形式,提取其抽象特征,从而实现对舌象的深度表示;所述的对裂纹区域进行预测的候选框生成方法,在不同层次的特征图上生成多种尺度、多种长宽比的默认盒子作为候选框,并将与真实框最吻合的候选框作为正样本,其余候选框都作为负样本。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810371990.8/,转载请声明来源钻瓜专利网。