[发明专利]基于核极限学习机分位数回归的风电功率区间预测方法有效
申请号: | 201810366482.0 | 申请日: | 2018-04-23 |
公开(公告)号: | CN108428017B | 公开(公告)日: | 2021-10-19 |
发明(设计)人: | 杨锡运;邢国通;付果;马雪 | 申请(专利权)人: | 华北电力大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/00;G06N20/00 |
代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 张文宝 |
地址: | 102206 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于核极限学习机分位数回归的风电功率区间预测方法,包括:采集风电场输出功率与风速数据;数据进行简单处理,删去不合理的数据;构建核极限学习机分位数回归模型;利用粒子群算法优化核极限学习机分位数回归参数并确定回归模型;带入测试数据得到风电功率预测区间。本发明有效地将分位数回归原理和核极限学习机模型结合,通过粒子群算法搜索寻优获得最优的模型参数,能够有效地把握风电功率中的不确定信息,进而得到较好的预测结果,能够为风电并入的安全稳定运行提供依据。 | ||
搜索关键词: | 基于 极限 学习机 位数 回归 电功率 区间 预测 方法 | ||
【主权项】:
1.一种基于核极限学习机分位数回归的风电功率区间预测方法,包括如下步骤:步骤1:采集风电场原始数据组成原始数据集D={(w1,p1)(w2,p2)…(wi,pi)},wi为第i时刻的风速,pi为第i时刻的功率,并进行数据处理;步骤2、将数据分为训练样本和测试样本,将处理后的数据的训练样本按照1:1的比例分配为建模集和优化集,利用训练数据样本构建基于粒子群算法的核极限学习机分位数回归模型:
式(1)中
为核极限学习机,
ΩEML为核矩阵,k为核函数,设定为RBF核:k(a,b)=exp(‑||a‑b||)2/σ,训练数据建模集的wi构成核极限学习机中核函数k中的x1到xN,x为训练数据优化集的wi,ΩEML(i,j)=k(xi,xj),O为预测目标值向量,由训练数据建模集的pi组成;C为惩罚参数;y(x)为回归模型的输出,分别输出区间上下限U(x),L(x);步骤3、根据分位数回归和预测区间覆盖概率(PI coverage probability,PICP)确定适应度函数,利用粒子群算法根据适应度函数优化核极限学习机中的参数C、σ以及模型(1)中的β;步骤4、将得到的最优目标参数C、σ以及β带入到(1)式的核极限学习机分位数回归模型,带入测试数据,输出风电功率预测区间上限和下限。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810366482.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理